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SUMMARY 

A transfer function method for predicting the dynamic 
responses of gear systems with more than one gear mesh is de- 
veloped and applied to the NASA Lewis four-square gear fatigue 
test apparatus. Methods for computing bearing-support force 
spectra and temporal histories of the total force transmitted 
by a gear mesh, the force transmitted by a single pair of 
teeth, and the maximum root stress in a single tooth are de- 
veloped. Dynamic effects arising from other gear meshes in 
the system are included. 

It is shown that the above response metrics depend funda- 
mentally on the dynamic transmission error of the mesh under 
consideration. The F0urie.r transform of the dynamic transmis- 
sion error of a mesh is expressed as a linear combination of 
the Fourier transforms of the static transmission errors of 
all meshes in the system. The complex frequency-dependent co- 
efficients in this expression, which we call transmission error 
dynamic increment functions, characterize the dynamic properties 
of the gearing system. Expressions for these functions are de- 
rived and plotted for the NASA Lewis gear fatigue test apparatus. 

A profile modification design method to minimize the vibra- 
tion excitation arising from a pair of meshing gears is re- 
viewed and extended. Families of tooth loading functions re- 
quired for such designs are developed and examined for poten- 
tial excitation of individual tooth vibrations. The profile 
modification design method is applied to a pair of test gears in 
the NASA Lewis fatigue test apparatus using an approximate tooth 
stiffness calculation provided by NASA. 

The above described methods are used to compute the bearing- 
support force spectra and temporal histories of the force trans- 
mitted by a pair of teeth and the tooth root stresses for two 
sets of profile modifications - a conventional modification con- 
sisting of linear tip relief, and the above mentioned profile 
modification for minimum vibration excitation. Significant dif- 
ferences in the dynamic forces transmitted by the teeth and in 
the tooth root stresses are predicted for these two cases. 
These differences are discussed and are related to the gear 
system dynamic properties. 

The above computational methods are carried out, for the 
most part, in the frequency domain using the fast Fourier trans- 
form computational algorithm. The required computer programming 
was carried out by Mr. Robert Fabrizio with supplementary pro- 
gramming by Ms. Caroline Buchman and Mr. Edward Campbell. 



THE EXCITATION 

A time varying component of vibratory excitation arises 
from each meshing pinion-gear pair in a gearing system. For 
each gear element - i.e., pinion or gear - the principal source 
of this excitation component is the deviations of the active 
tooth surfaces of<that gear element, under loading, from perfect 
involute surfaces with uniform spacing. Thus, this principal 
source of excitation is most naturally des'cribed as a dispzacement 
type of excitation as opposed to a force type of excitation. This 
displacement excitation gives rise to a time varying component in 
the total force transmitted normal to the tooth surfaces which 
is also dependent on the dynamic parameters of the gearing system - 
i.e., on the overall configuration and the mass and interial 
properties of the system. 

In addition, there are time varying tangential forces between 
meshing pairs of teeth that arise from the friction and sliding 
action of the teeth. The component of vibratory excitation caused 
by these frictional forces is generally believed to be small in com- 
parison with the component due to deviations of the loaded teeth 
from perfect involute surfaces. These frictional forces therefore 
will be neglected in this report. 

Gear elements with perfect, rigid, uniformly spaced involute 
teeth transmit exactly uniform angular velocities. Thus, to pre- 
dict the response of a gearing system to deviations of the loaded 
teeth from perfect involute surfaces, we require the deviations of 
the angular positions of individual gear elements under loading 
from the positions of their perfect, rigid, involute counterparts. 
In this report, we shall use the static transmission error [l-3] 
to describe this component of the vibratory excitation, where the 
static transmission error of a meshing gear pair can be defined 
[4,5] as the deviation 60 from linearity of the anguZar position 0 
of a gear measured as a function of the angular position of the 
gear it meshes with when the gear pair is transmitting a constant 
torque at low enough speed so that inertial effects are negZigibZe. 
Our analysis to follow will use the lineal static transmission error, 

r = Rb68 , (1.1) 

where Rb is the base circle radius L-61 of the gear whose angular 
transmission error is 68. When the equations of motion of the 
gearing system are written later in this report, we shall see how 
the lineal transmission error 5 is used to predict the vibratory 
response of points of interest within the system. 

The static transmission error of a pair of meshing gears is 
made up of contributions from each of the two gears. For each 
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gear, there is a contribution from the elastic deformations 
of the teeth and gear body, and a contribution from 
the geometric deviations of the unloaded teeth from perfect uni- 
formly spaced involute surfaces. Furthermore, in References 4 
and 5, we have found it useful to further decompose these geo- 
metric deviations into a mean component and a random component. 
The mean geometric deviation component for a pinion or gear is 
defined as the tooth surface formed by taking the average of all 
tooth surfaces on the pinion or gear under consideration. The 
random component of the geometric deviation of a tooth surface 
is defined as the deviation of that tooth surface from the mean 
tooth surface. Thus, every tooth surface on a pinion or gear 
has the same mean deviation component; however, the random devia- 
tion component generally will differ from one tooth to the next. 
It is shown in References 4 and 5 that the elastic deformations 
and the mean component of the geometric deviations of the teeth 
give rise to the tooth meshing harmonics of vibratory excitation 
and response, whereas the random component of the geometric de- 
viations gives rise to the rotational harmonics, and especially, 
to the so-called sideband components of the spectrum which occur 
at the tooth meshing harmonic frequencies plus and minus one or 
a few rotational harmonic frequencies. The random component of 
the deviations provides no contribution to the tooth meshing 
harmonics. Proofs and full discussion of these facts can be 
found in References 4 and 5. 

In high quality, highly loaded, ground aerospace gearing, the 
random component of the deviations of the tooth faces from perfect, 
uniformly spaced involute surfaces is generally small in compari- 
son with the mean component of the deviations and the component 
due to elastic deformations. Hence, in the analysis to follow, we 
shall mainly concentrate on the mean deviation of the tooth sur- 
faces and the component caused by elastic deformations. A full 
discussion of the random component of the deviations and its 

' effects on the excitation spectrum can be found in References 4 
and 5. 

Fourier Series Representation of 

Tooth-Meshing Harmonic Components of the Excitation 

Computation of the response of vibratory systems to dynamic 
inputs generally is most easily carried out in the frequency 
domain, where temporal convolution or Duhamel integrals are re- 
placed by simple multiplications. Since the excitation compon.ents 
of most interest are the mean component of the deviations of the 
tooth surfaces from perfect involute surfaces and the component 
due to elastic deformations, each of which gives rise to a peri- 
odic excitation with period equal to the tooth spacing interval, 
the appropriate description of the static transmission error of 



these comnonents for later use in the eq6ations of motion is their 
Fourier series representation. To generate the Fourier series 
representation of these static transmission error components, we 
shall use for our independent variable the quantity 

X = RbO , (1.2) 

where 0 is the nominal angular position in radians of one gear of 
the pair whose base circle radius is R 

!? 
. Thus, the same lineal 

variable x describes the nominal posit ons of both gears in a 
meshing pair, 
gears. 

since the product Rbe is the same for both of the 

A thorough analysis and discussion of the Fourier series repre- 
sentation of the static transmission error can be found in Ref- 
erences 4 and 5. Thus, in this section, we shall summarize the 
formulas required for computations of the Fourier series represen- 
tation of the mean or deterministic component 5 (x) of the static 
transmission error of a generic meshing pair ofmspur gears with 
appropriate reference to thederivations of these formulas. We 
shall then provide a brief treatment of the contribution from 
tooth-spacing errors. 

From Eqs. (60) and (61) of Reference 4, we see that when the 
random component C,(x) of the static transmission error is ne- 
glected, we can express the resulting mean component of the static 
transmission error as 

5m(x) = ~,Cx), + ?i y(x) + r;;2)h) , (1.3) 

where Ciw(x)o is the (.loading dependent) component resulting from 
elastic deformations of the teeth and gear bodies, and - 
<(-l)(x) and yc2)(x) m m each represents the contribution to the static 
transmission error arising from the mean tooth face deviations on 
gear (0). Numbered superscripts in parentheses designate one gear 
or the other in a meshing pair. Superscript W on the loading 
dependent component represents dependence of that component on force 
W transmitted by the mesh, and subscript 0 designates that the 
transmitted load is assumed to be the constant value WO. 

Following Eqs. (64) through (67) of Reference 4, we can ex- 
press the Fourier series representation of the mean component of 
the static transmission error as 
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00 
z;,(,x) = L ‘a mn exp(i2rnx/Al , (1.4) 

where, from the linear relationship on the right-hand side of 
Eq. (1.3), the Fourier series coefficients cmn of C,(x) may be 
expressed as 

A/2 
01 2 mn A I 

S,(x) exp(-i2mnx/A) dx 
-A/2 

+ CP = 'Wn mn + J2) mn (1.5) 

and where awn, c(l! and cc2) are, respectively, the Fourier expan- 
sion coefficientinof the ?tad-dependent component Cw(x),, and the 
mean deviation components Cm (l)(x) and <A2) (x) from the teeth of 
gears (I ) and (2) of the pair - i.e., 

cWn 
1 A/2 

=- A c,(x) o exp (-i2mnx/A 
:A/2 

I 

A/2 

-A/2 
)(x) exp(-i2mnx/A dx. 

dx (1.6) 

(1.7) 

Let us concentrate now on determining a useful set of expres- 
sions for computing the Fourier series coefficients cWn of the 
loading dependent component of the static transmission error. 
From Eq. (68) of Reference 4, we see that cWn can be expressed as 

cWn = 'oc(l/K)n' n = 0, -l 1, + 2, l ** (1.8) 

where the constant force W, transmitted by the mesh is defined in 
the direction determined by the intersection of the base plane and 
axial plane, and cx (l/K)n are the Fourier series coefficients of the 
reciprocal of the total mesh stiffness. According to Eqs. (77) 
and C.87) of Reference 4, these latter Fourier series coefficients 
can be computed to any desired degree of accuracy from the expres- 
sion 
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a(l/K)n g c 
Cal 

, (1.9) 

where the accuracy of this expression increases with increasing M. 
According to Table I on p. 1761 of Reference 5, M should be taken 
at least equal to M = 3 for accurate calculations of c~(~,~)n for 

spur gears. The quantities are the binomial coefficients 

M+l A (>( = (M+l)! 
R+l R+l)!(M-R)! ' 

whereas, in Eq. (l.g), we have also used the definition 

(1.10) 

(1.11) 

where 6 n o is Kronecker's delta , 

I 1, i=j 

I 
0 9 otherwise, (1.12) 

and where the vertically centered asterisks in Eq. (1.11) denote 
discrete convolutions defined by the right-hand equality in 
Eq. (G12) on p. 1428 of Reference 4. Notice that for R = l,2,3, . . . . 
we have 

(1.13) 



The quantities c1 are the Fourier series coefficients of the 
total mesh stiffness !&! defined by Eq. (75) of Reference 4 for 
fi=l, and ET is the mean value of the total mesh stiffness as defined 
by Eq. (F.2) on p. 1427 of Reference 4. These latter two quantities 
can be computed from the spur gear local tooth pair stiffness KS(z) 
which is described in detail in Appendix A of this report. Since we 
are considering here only spur gears, which have zero helix angles, 
we have in these cases from Eq. (C4) of Reference 4, (L/A) = 0. 
For spur gears, we therefore have from Eq. (86) of Reference 4, 

iTCIO,(nL/DA)l 
&,(",o) 

> 

whereas, from Eq. (85) of Ref. 4, we have 

ET = j$ ;i,,(o,o) , (l-15) 

(1.14) 

which reduces our problem to determination of k,C[O,(nL/DA)]. Let 
us define the spur gear local tooth pair stiffness KS(z) as 

F/2 

K,(z) e I KTC(YrddY , (1.16) 
-F/2 

where F is the face width of the gear and KTC(y,z) is the local 
tooth pair stiffness per unit length of line of contact expressed 
in the tooth coordinates defined by Eqs. (15), (16), and (19) of 
Reference 4. From Eq. (82) of Reference 4 and Eq. (1.16) above, 
we then have 

D/2 
iTC[o,hL/DA)] = I KS(z)e -i2n(nL/DA)zdZ 

-D/2 
(1.17) 

and 

i,c(o,o) = 
D/2 

I KS(z)dz, 
-D/2 

(1.18) 

where D is the total height of the active tooth surface as illus- 
trated in Fig. 4 of Reference 4. Coordinate z is defined in 
Appendix A, and L is the length of line of contact illustrated in 
Fig. 2 of Reference 4 which is related to D by 
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L - = csc$, D (1.19) 

according to Eq. (~8) on p. 1426 of Reference 4 where $I is the 
pressure angle. According to Eqs. (A5) and (A6) on p. 1424 of 
Reference 4, A is the base pitch which is related to the circular 
pitch AC by 

A = Ac(Rb/R) = AC cost$ (1.20) 

where R b is the base circle radius and R is the pitch circle 
radius. The overall parameter L/DA that appears repeatedly above 
therefore can be expressed in terms of the pressure angle 9 and the 
circular pitch AC by 

L -= csc$ ctn+ 
DA Ac - 

(1.21) 

Once a value of M (M&3) is chosen, Eqs. (1.8) through (1.21) deter- 
mine the Fourier series coefficients awn, n=O, 51, t2;.. of the 
Zoad dependent component of the static transmission error in terms 
of the loading W0 carried by the mesh, the local tooth pair stiffness 

KS(z) over the range -D/2 4 z 4 D/2, and the design parameters 4 

and A 
C’ 

We turn now to determining an analogous set of expressions 
useful for computing the Fourier series coefficients cx (*I of the mn 
mean deviation components of the static transmission error for 
either gear (*> = (1) or (2) of a meshing pair. According to 
Eq. (94) of Reference 4, the mean deviation Fourier series coeffi- 
cients can be expressed as 

p 
mn = c(l/K)n*c 

(*),n=(),+l +2 *.- - , - 9 
m'n 

(1.22) 

where the coefficients a (l/K)n are given by Eqs. (1.9) through 
(1.21), and where the vertically centered asterisk again denotes 
the discrete convolution defined by the right-hand equality in 
Eq. (G12) on p. 1248 of Reference 4. The coefficients 
a(') are determined from the mean profile modification of gear (0) 

m'n 
by first using Eq. (92) of Reference 4 applied to the case of spur 
gears [where $b = 0 and (L/A) = O] - i.e., 

p = 

m'n 
$ ';I:;) [0, (nL/DA)]. (1.23) 



Since our interest here is spur gearing, we shall now restrict the 
general theory presented in References 4 and 5 to the case where the 
mean tooth face modification m (=I (y,z> of gear (*) (defined on 
P. 1417 of Reference 4) is indgpendent of the axial coordinate y 
illustrated in Fig. 4 of Reference 4. That is, let us define for 
spur gears the mean profile modification of gear (0) as 

m;')(z) A mi*)(*,z) , (1.24) 

where md')(* (0) ,z) is the tooth face modification mC (y,z) that we here 
assume to be independent of axial location y. Let us further define 
for spur gears the stiffness weighted mean profile modification 

cm> mKS (z) as the,axial integral of the stiffness weighted tooth face 
modification mKC '*'(y,z) expressed by Eq. (48) of Reference 4 - i.e., 

F/2 

rr&'(y,z)dy 

I 
F/2 

= 
KTC 

-F/2 

= Ks(z)mS.)(z) , 

dy 

(1.25) 

where the last line follows from Eqs. (1.16) and (1.24). Setting 
= 0 in Eq. (91) of Reference 4, we see that 

Pl( . ) 
mKc [O,(nL/DA)I can be expressed using Eq. (1.25) as 

mKC A(*)[O,(nL/DA)] = ,/D'2Ks(z)m~*)(z)e-i2n(nL'DA)zdz. (1.26) 
-D/2 

Equations (1.221, (1.231, and (1.26) determine the Fourier series 
c-1 coefficients arnn , n = 0, 21, 22, a-8 of the contribution to the 

static transmission error from the mean profiZe modification of 

gear (-1, 
n = 0, 21, 

(*I = (1) or (21, in terms of the coefficients a 
(l/K)n' 

+2, l ‘- determined by Eq. (l-9), the local tooth pair 
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stiffness KS(z) described by Eq. (1.16), the mean profiZe modification 

m;')(z) of gear (*>, and the design parameters given by Eq. (1.21). 

When the Fourier series coefficients of the toad-dependent 
component of the static transmission error,Eq. (1.81, are added 
to the Fourier series coefficients of the mean profiZe modification 
component from each gear, Eq. (1.22), (0) = (1) or (2), as shown 
in Eq. (1.5). we have a compZete expression for the Fourier series 
coefficients of the tooth meshing harmonic components of the static 
transmission error of the meshing gear pair. These formulas, and 
the ones to follow, take into full account the alternating numbers 
of teeth in contact as the gears rotate. 

Fourier Series Coefficients of Rotational Harmonic 

Components Caused by Tooth-Spacing Errors 

A thorough discussion of the contributions of manufacturing 
errors that cause variations in the running surfaces of gear teeth 
from one tooth to the next can be found in References 4 and 5. 
That treatment is capable of predicting the rotational harmonic 
contributions caused by any errors of this type. However, in high 
quality ground aerospace spur gears, we would expect the dominant 
manufacturing error component to be that associated with tooth spac- 
ing errors. Formulas for the rotational harmonic contributions 
caused by tooth spacing errors are summarized below. 

The tooth spacing errors on gear (*) of a meshing pair, 
lo> = (1) or (21, give rise to a periodic contribution to the static 
transmission error, where 
ference of the gear. If N te 

Q period is the base circle circum- 
denotes the number of teeth on the 

gear and A the base pitch, then that period is N (*)A . Thus, there 
are two sets of such rotational harmonics generated from each pair 
of meshing gears, one set from each gear, unless the numbers of 
teeth on the two gears is the same. 

Let s") 
j 

denote the accumulated tooth spacing error of tooth 
j of gear (0) as defined by Eq. (107) of Reference 5 with 

(*> z ,(*) 
'ii j ,OO' Let B(O) (n) denote the finite discrete Fourier trans- 
form of the sequence E. (O), j 

J 
= O,l,..-,N-1: 

N(*)-1 
,(-I -iZrnj/N(*), n=0,+1,+2;.. . (1.27) 

Then, we see from Eqs. (52) and (53) of Reference 5 that the Fourier 
series coefficients a (* > 

rn of the component of the static transmission 
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I I 

error caused by the tooth spacing errors of gear (0) can be 
expressed by the simple multiplicative relationship 

(p 
rn (1.28) 

where, here, n denotes the rotational harmonic of gear (0) where 
the period of the fundamental component n = 1 is N (*)A. From 
Eq. (110) of Reference 5, we see that the mesh transfer function 
for tooth spacing errors SO0 appearing in Eq. (1.28) can 
be expressed as 

6 
= sin[ (n/N c-1 )nL/A] 

(n/N(.))TL/A - 

except 
n'=O (1.29) 

where we have used g = n/N c-1 and the fact that j,(x) = sinx/x 
as indicated by Eq. (126) of Reference 5. The function w m 
Eq . (1.29) is defined by Eqs. (93) and (94) of Reference'5 ini.e., 

woo(fi , nl) = $ rect[$[fi - n!)\ [l+cos 

where from Eq. (90) of Reference 5, we see that 

1 3 1x1 < g 
rect[x] h 

I 0 , I4 2 ' >/ L 
(l-31) 

In the above formulas, the quantity L/A is the transverse contact 
ratio which, from Eq. (148) of Reference 5, we see can be expressed 
in terms of fundamental design parameters by 

(1.32) 
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where, as before, D, NC*), 4, and RA*) are, respectively, the 
active depth of the teeth, the number of teeth on gear (-), the 
pressure angle, and the base circle radius of gear (*>. 

Use of theabove formulas is illustrated on pp. 1774 through 
1780 of Reference 5. A discussion of the general properties of 
the excitation spectra of spur and helical gears may be found on 
PP* 1781 through 1785 of that same reference. 
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THE EQUATIONS OF MOTION 

We turn now to writing the system equations of motion in a 
form useful for computing the desired response metrics from the 
excitation characterization described in the preceding section. 
The system of interest is the "four-square" gear fatigue test 
apparatus located at the NASA Lewis Research Center. A schematic 
diagram of this system is shown in Fig. 1. The system contains two 
test gears and two slave gears as shown. The lightweight test gears 
are connected to the relatively massive slave gears by short very 
stiff shafts. Torque is applied between the shafting and one of 
the slave gears using a pressurized-oil torque-applier. There is 
no accumulator associated with the torque applier. The system is 
firmly supported. 

A displacement type of excitation takes place at each of the 
two meshes I and II. Because of the relatively large stiffnesses 
of shafting, gear bodies, and bearing support structure we shall 
assume that the (displacement) excitation at the meshing points 
is "taken up " by tooth elastic deformations and relative motion 
between the shafting and slave gear at the fluid loaded torque 
applier. That is, shafting,gearbodies, and bearing supports shall 
be modeled as rigid members with gear bodies and shafting possessing 
inertia. Gear teeth shall be modeled as elastic members. The 
torque applier shall be assumed to apply constant torque ~~ plus a 
dissipation torque ~~(6, -6,) proportional to the angular velocity 
difference between the slave gear and its shafting. Thus, the 
system is assumed to have three degrees of freedom, el, 02, and O3 
as shown in Fig. 1. Since some vibratory energy associated with 
motions e1 and 8, is necessarily dissipated in the bearings, 
viscous damping terms are directly associated with these two degrees 
of freedom. For completeness, a viscous damping term also will 
be associated with e3. 

Because bearing supports are assumed to be rigid, each gear 
must move in pure (generally unsteady) rotation. Thus, the instan- 
taneous forces WI and WI1 transmitted by meshes I and II must have 
equal and opposite reactions at the bearing supports as illustrated 
by the test gear supports in Fig. 1. Since we are dealing with 
gears of nominal involute design, the directions of meshforces WI 
and WIIJ and their bearing reactions, remain fixed and parallel to 
their respective planes of contact. However, the magnitudes of 
these forces generally will possess temporal variations. 

All gears in the system have the same base circle radius R, 
which is the radius instrumental in generation of the gear torques 
by forces WI and WII. I1 designates the moment of inertia of the 
left-hand slave/test gear pair and shafting whose angular position 
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FIG. 1. SCHEMATIC OF NASA LEWIS GEAR FATIGUE TEST 
APPARATUS. 
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is el. I2 designates the moment of inertia of the test gear and 
shafting whose angular position is e2, and I3 designates the moment 
of inertia of the slave gear whose angular position is 8 . Dissi- 
pation (dashpot) constants c 

1' 
c2, and cg are associated3with 

8 8 
1' 2' 

and 8 3 respectively. 

Thus, the differential equations of motion of the three 
rotational elements are 

Iji + Cl61 = RWII - RWI = R(WII-WI> (2.1) 
1 

16 + c 8 = + + 2 2 2 2 -RWI ~~ ca(i3-g2) 

13i3 + c3*3 = RWII - ~~ - c,(B 3 -i2) . 

(2.2) 

(2.3) 

The moments of inertia II, I , and 13, radii R, applied torque 'c~, 
2 

and dissipation constants cl, c2, c3, and c all are assumed to 
be independent of time, whereas, angular pogitions el, e2, and e3 
and forces WI and WII, are assumed to be generally time dependent. 
Angular positions 8 , 8 , and 8 are the vibratory components of 
the true angular poiitiks of tie gears. 

Let us now relate the instantaneous mesh forces WI and WII to 
the transmission errors of the appropriate gear pairs and the 
angular positions 8 of the gears. The transmission error is mea- 
sured in the axial plane in a direction parallel to the plane of 
contact of the gear teeth, and is defined as positive when it is 
"equivalent" to removal of material from the tooth surfaces 
[p. 1410 of Reference 41. Thus, if we denote the (dynamic) trans- 
mission error of meshes I and II by CI and <II respectively, then 
for the teeth to be in continuous contact we require the following 
two compatibility relations to be satisfied [p. 1410 of Reference 41 
as may be seen from Fig. 1: 

R8 + Re2 = SI (2.4) 
1 

-RB -RB =cII. (2.5) 
1 3 

Let GD denote the (dynamic) transmission error <I or <II 
associated with either of the two meshes illustrated in Fig. 1, and 
let CT denote the total compliance of the teeth in the same mesh. 
CT varies periodically with time due to variations in tooth-pair 
stiffness and the numbers of teeth in contact. Let W denote the 
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force transmitted by the mesh which also can var with time. 
Then CD can be expressed [p. 1410 of Reference 4 9 as 

where G(l) and 5(2) each denotes the component of the transmis- 
sion error from one gear in the mesh due to geometric devia- 
tions of the active tooth surfaces from perfect involute sur- 

(2.6) 

faces [p. 1410 of Reference 41. The average value of 5 (1) and 
p where each value is an average over all teeth on the appro- 
priate gear (1) or (2), yields the mean transmission error com- 
ponents L$~) and <m2) contained earlier in Eq. (1.3) and de- 
scribed in Reference 4. 

To enable us to use a transfer function approach to effect 
a solution to the gear system dynamic problem, let us now de- 
compose CT and W into their time average components CT and Wo, 
and their fluctuating components 6CT and 6W - i.e., 

cT = CT + NT (2.7) 

W =w -F6W. (2.8) 
0 

We then have 

cTw = CTW + 6CTW t 6CT6W (2.9a) 
0 

= CTW + w 6CT , (2.9b) 
0 

where, in the second line, we have neglected the product 6CTbW 
of fluctuating quantities. If we now define a loading dependent 
component of the static transmission error as 

(2.10) 

we see that since (l/K) q CT, this definition is the same as that 
of <W(x)0 in Eq. (1.3) whose Fourier coefficients are given by 
Eq. (1.8) - except that the dc component WocT of <W(x)0 de- 
scribed by the term n = 0 in Eq. (1.8) is not included in the 
definition, Eq. (2.10). Using the approximation given by 
Eq. (2.9)., we may now combine Eqs. (2.61, (2.9), and (2.10) to 
give 
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J s?’ 
3D 2 CTW + 3; + ?p + 3 (2) 

0 

= ETW + 3’ , 

where in the second line we have defined 

3 ’ e rho + 3 (1) + 3(2) , 

(2.11) 

(2.12) 

which is the static transmission error discussed in the first 
section of this report except for the dc component WocT not 
incZuded in Eq. (2.12). Equation (2.11) provides an approximate 
relationship between the dynamic and static transmission errors 
that would be exact if the product 6CT6W were added to its 
right-hand side. 

Using the approximation given by Eq. (2.11), we therefore 
can express the dynamic transmission errors of each of the two 
meshes illustrated in Fig. 1 by 

31 % c*w* + 3; (2.13) 

and 

311 = c**wJ-- + 3;I 9 (2.14) 

where CI and CII denote respectively the time-average values of 
the compliances CI and CII of meshes I and II, WI and WII denote 
the time-varying forces transmitted by these meshes, and 3; and 
3;I denote the static transmission errors of these meshes as 
defined by Eq. (2.12). Combining Eqs. (2.4) and (2.13), and then 
Eqs. (2.5) and (2.14), gives 

wl+e2) = c*w* + 3; 

and 

-R(el+e3) = ~IIWII + 3;- , 

which we can solve algebraically for WI and WII to give 

wI = (EI)-1CR(el+e2b3$l 

(2.15) 

(2.16) 

(2.17) 
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and 

wII = -(~~,)-1CR(.el+e3)t3;~]. (2.18) 

Mesh forces WI and WII, system displacements 8 , 8 , and 8 , and 
transmission errors 3; and 3;I in Eqs. (2.17) and t2.18) aie all 
assumed to be time-varying quantities. Finally, by substituting 
the expressions for WI and WII given by Eqs. (2.17) and (2.18) 
into Eqs. (2.1) through (2.3), we obtain after minor rearrangements 

Il+161+R2[(CI) -~t(CII)-*]e1tR2(CfI)-1e 
2 

tR2(EII)-1e3 = R(~~)-'3;-R(C,,)-'r;I 

R2(c,) -~~1+~2~2t(c2t~a)~2+R2(cI)-le -cae3 
2 

= T~+R(CI)--~~; 

(2.19) 

(2.20) 

R2(cII) -~~1-Ca~2+r3i;3t(C3+Ca)~3+R2(CII)~1~ 
3 

= -T a-R(cII)-13;I . (2.21) 

Equations (2.19) through (2.21) are the desired differential 
equations of motion for the system (displacement) responses 
8 8 

1’ 2’ 
and 8 with the (time-varying) static transmission errors 

3 

3f and 3;I of meshes I and II as the excitation. 3; and 3iI are 
defined by Eqs. (2.12) and (2.10), and may be written explicitly as 

5; = ka/R)6CI t 3i1) t 3i2) 

and 

r;* = ka/R)GCII + 3;;) (3) 
+ 311 ' 

(2.22) 

(2.23) 

where -r,/R is the time-average force W, transmitted by the two meshes, 
6CI and 6CII are, respectively, the fluctuating components &CT of 

(1) the compliances of meshes I and II, 3I and 3i2) are the geometric 
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components of the transmission errors of gears (1 I . ~ I > and (2) of 
mesh I, and 3k;'and 3:;' are the geometric components of the 
transmission errors of gears (1) and (3) of mesh II. See Fig. 1. 
The derivation of Eqs. (2.19) through (2.21) illustrates a speci- 
fic application of the general methodology described on p. 1410 
of Reference 4. 

Solution Using Transfer Functions 

We shall now solve the set of Equations (2.17) through (2.21) 
to yield algebraic expressions for the Fourier transforms of the 
time-dependent mesh forces WI and WII in terms of the Fourier 
transforms of the static transmission errors 3; and 3;I (or, 
equivalently, their Fourier series coefficients). We shall begin 
by taking the Fourier transforms of each of the five Equations 
(2.17) through (2.21). In general, we denote the Fourier trans- 
form of a 
yt 1, e2 

e^<d 

variable by placing caret over that variable - e.g., for 
t), or es(t), we define 

cm 
A = I 

e(t)ewiwt dt , (2.24) 
-03 

for WI(t) and WII(t), we define 
03 

&co, g I W(t)emiwt dt , 
-03 

for 3;(t) and 3;,(t), we define 
00 

&w> 4 I 3'(t)emiwt dt , 

and, finally, for our applied dc torque ~~~ we define 
cm 

I 'c emiwt dt a . 
-co 

The Fourier mates to Eqs. (2.24) through (2.27) are 
03 

e(t) = & 
f 6(w>e lwt dw 

I 

co 

W(t) = & ii(w)e lwt dw 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
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03 

3’(t) = & 
I 

f'(w) eiwt dw 

and 

‘r 
1 03h 

a =s I 
.ca(w)eiwt dw, 

-00 

(2.30) 

(2.31) 

where, from this last relation, we may conclude that 

.;,(d = 2?nab(w) (2.32) 

since T a is a constant torque. In Eq. (2.32), a(w) denotes the 
Dirac delta function, which is zero everywhere except at w = 0, 
and whose integral over w is unity. From Eq. (2.28), we may also 
conclude 

i<t 

that 

co 
> 1 =zi iw6(w 

-CO 

and 

N>e iwt dw (2.33) 

. . . . 
e(t) = -$ 

I 

. 
-w26(w)elwt dw, (2.34) 

-co 

from which it follows that iwe^(w) and -w28^(w) are, respectively, 
the Fourier transforms of 6(t) and 6(t). 

Utilizing Eqs. (2.24), (2.261, (2.271, (2.33), and (2.34), we 
may now write the Fourier transforms of Eqs. (2.19) through (2.21) 
as 

-rlw2ticl~+R2[(~I)-1+(~II ?I} 1 e^ +R2(cI)-‘eh 
2 

+ R2(cII)-li3 = R(-dI)-l;;-R(CII)-lS;I 

R2(~I)-1~lt[-12w2i-i(c2tca)w~R2(~I)-11~ 
2 

and 

-icaw6 = ? 
3 a t R(EI)-l5"; 

R2(cII)-18 - 
1 

icaw62t[-r w2ti(c +ca)w+R2(CII)-'leh 
3 3 3 

= -3 a - R(cII)-l;;I. 

(2.35) 

(2.36) 

(2.37) 
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Equations (2.35) through (2.37) are a set of linear algebraic 
equations for the Fourier transforms of the responses 8 , 8 , gnd 
B3 in terms of the Fourier transforms of the excitation8 -ra$ 3I 
and 3;I. Let us define Hij (w) as the response 6, due to unit 
excitation r^: = 1, where 1 = 1,2, or 3 and j = I or II. Then 
for w # 0, tie set of Equations (2.35) through (2.37) can be 
written in matrix form, 

[Aij(W)] [Hij(W)] = CUij <~)l , a#0 (2.38) 

where the condition w # 0 arises from the fact that Qa(w) has a 
component only at W = 0. From Eqs. (2.35) through (2.37), we 
see that [Aij (w)] is a symmetric square matrix with elements 

A = 11 -Il~2ticl~tR2[(~I)-1i-(~II)-1] 

A = 12 R2(cI)-' 

A = 13 R2(CII)-' 

A =A 
21 12 

A22 = -12w2ti(c2+ca)~+R2(~I)-1 

A = 23 -icao 

A 
31 = A13 

A =A 
32 23 

A = 
33 

-13ti2ti(c3+ca)W+R2(~II)-', 

whereas the excitation matrix [Uij(w)] can be written as 

(2.39) 

(2.40) 
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We wish now to express the Fourier transforms of the mesh 
forces WI and WII in terms of the solutions Hij(w) of the matrix 
Eq. (2.38). Forming the Fourier transforms of Eqs. (2.17) and 
(2.18) and using the definitions, Eqs. (2.24) through (2.26), we 
have 

G, = C*)-' 
[ 

R(61+g2)-:; 1 (2.41) 

and 

ii,= -(c,,Y-' C 
R(61t63)+& . 1 (2.42) 

Recognizing that HII (w> and H21 (0) are the responses il(w) and 
g2(w) to a unit input t;(w) = 1 at mesh I, and that HIII(u) and 
H211(u) are the responses gl(w) and G2(w) to a unit input 
t;*w = 1 at mesh II, it follows from the linearity of the system 
of Eqs. (2.35) through (2.37) and the definitions of Hij(-W), 
i = 1 and 2 and .i = I and II that from Ea. (2.41) we have for the 
Fourier transform of WI(t) , 

- 

$1 = <c,,-l ~R~H,,Cw)+H,,(~)l-1~~~ 
+ R[HlII(w)+H211(&;I , w # 0. 

Similarly, we may express WI, as 

(2.43) 

* 

wII = -(E**Y 

t ~R[HlII(~)+H311(~)l+16;I J w # 0. (2.44) 

Equations (2.43) and (2.44) are valid for all w except w = 0. 
Since our central interest is the force history in mesh I, we 
shall evaluate from here on only the Fourier transform WI of that 
force history. From Eq. (2.43), we see that once HII(u), H21(u), 
H1**(fJd 9 and H2~~h) are evaluated, 
t;(u) and ;;I 

the computation of i,(w) from 
(w) is a very simple matter. 

Evaluation of Transfer Functions 

Let us now proceed to evaluate the transfer functions H ij (w) 9 
1 = 1 and 2, j = I and II, which are solutions to the matrix equa- 
tions defined by Eqs. (2.38) through (2.40). 
[e.g., p. 12 of Reference 71, 

Using Cramer's rule 
we recognize that any of the required 

H,j(o) can be expressed as 
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where D(u) is the determinant of 
whose elements are given by Eq. 
readily evaluated to give 

the coefficient matrix CA,,(w)] 
(2.39). The determinant D'i; 

I A A A 
11 12 13 

A 
23 

A A A 
31 32 33 

(2.45) 

= All(A22A33-A23A32) 

-A21(A A 
12 33 

-A13A32> 

= All(A22A -A2 ) 
23 

-A12(AL2:.:3-A13A23) 

> is 

(2.46a) 

(2.46b) 

(2.46~) 

where we have used the symmetry property A.. = A.. in writing this 1J J= 
last expression. Using Cramer's rule, it follows from Eqs. (2.38) 
and (2.40) that we may express N,, (w) as the determinant 

II 

R(C$--' A A 
12 13 

NII(u) 4 R(CI)-' A 22 A23 

0 A A 
32 33 

= RCcI)-1[(A22A 
33 

-A23Aa2)-(A12A 
33 

-A13A 
32 

= R(CI)-1[A33(A22-A12)+A32(A13-A23)1 

= R(cI)-'[A33(A22-A12)+A23(A 
13 

-A23)l, 

(2.47a) 

1 

(2.47b) 

(2.47~) 

where we have again used A ij =A ji in writing the last line. Simi- 
larly, we have 
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(2.48a) 

= R(~I)-1~A33(A11-A21)+A31(A23-A13)1 (2.48b) 

= 

NIIIW A 

= 

= 

and 

N211~~) = 

R(cI)-1[~33(~ -A12)tA 
11 13 

-R(&-'A A 
12 13 

0 A A 
22 23 

-R(c&-'A A 
32 33 

(A 
23 

-A13)l, (2.48~) 

R(cII)-1[A22(A -A33)+A23(A -A12)] 13 32 

R(cII)-1[A22(A13-A33)+A23(A -A12)], 23 

A 11 -R(CIr)-l Al 3 

A 0 A 
21 23 

A A 
31 -R(cI,)-l 33 

I 

(2.49a) 

(2.49b) 

(2.49c) 

(2.50a) 

R(~II)-1[A21CA -A13)+A23(All-A31)J 
33 

R(~&'[A12(A -A13)+A23(A -A 
33 11 13 

)]. 

(2.50b) 

(2.50~) 

The symmetry property Aij = A. 
Ji 

has not been used in the "a and b" 
versions of Eqs. (2.46) through (2.50); however, this symmetry 
property has been used in the 'c" version of Eqs. (2.46) through 
(2.50). 

Q(W) 
From Eq. (2.43), we see that we require the sums 

+ H21(u) and HIII(~) + H211(u). According to Eq.(2.45), we 
can express these sums as 
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(~1 + H2I (w> = 
NlI(d+N21(W) 

D(w) HII 
and 

(2.51) 

HIII(d + H2&d = 
NlII(d+N211(~) 

D(w) . (2.52) 

From Eqs. (2.47) and (2.48), it follows that the numerator in 
Eq. (2.51) can be expressed as 

NII + N21 = R(~I)-1[A33(A11+A22-A12-A21) 

+ (A13 
-A23)(A -A31)l (2.53a) 

32 

= R(i?I)-1[A33(All+A 
22 

-2A12)-(A 
13 

-A23)2], (2.53b) 

where Aij = Aji has been used in the second line, but not in the 
first line. In an analogous manner, we have from Eqs. (2.49) and 
(2.50) 

NlII+N211 = R(cII)-1[A23(All+A -A -A > 
32 12 31 

- (A33 
-A13)(A -A21)l (2.54a) 

22 

= R(~II)-1[A23(A11+A 
23 

-A12-A13) 

- (A33-A13)(A22-A12)l, (2.54b) 

where Aij = Aji has again been used in obtaining Eq. (2.54b) from 
Eq. (2.54a). 

Equations (2.46c), (2.53b), and (2.54b) are the relations 
required for evaluation of the sums HII(m) + H21(u) and 
HIII(a) t H211(u), using Eqs. (2.51) and (2.52), for substitution 
into Eq. (2.43). The coefficients A.. are given by Eq. (2.39). 

1J 
The results of these straightforward but tedious algebraic mani- 
pulations are 

NII(u) + N21(u) = R(cI)-' 
( 
(Ilt12)13w4 

- [(*l+*2+*3)R2(~II ) -lt(c1tc2tc3)cat(c1tc2)c-p2 

+ I{-[(1 +I )(c3+ca)+13(cl+c2+ca)]u3 
1 2 

+(c +c +c )R2(c,I)-%} , 
1 2 3 

(2.55) 
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NIII(w) + N211(~) = R(T;,,)- -1213W4 

+ [(c~+c~+c~~c~+c~c~1w2 

+ i[(I +1 +1 )ca+12c3+13c21~3 , 
i (2.56) 

1 2 3 

and 

LOW and High Frequency Asymptotic Behavior 
A 

(2.57 

Returning to the expression for WI given by Eq. (2.43), let 
us define 

QI ,(w) i R[H11(w)+H21(w)l-1 

and 

Q,,,(w) 4 R~H,IIh)+H,II(d] 

which enable us to express 8, as 

$1 = (~I)-l[QII(~);;+QI II (W);fIl' w f 0 . 

(2.58) 

(2.59) 

(2.60) 
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Since E-ICI, t;, and f;I is each the Fourier transform of a dis- 
placement, we see from Eq. (2.60) that &II(w) and Q I II(w) is 
each a dimensionless transfer function. In general, Qij(w) 
represents the contribution to the complex displacement amplitude 
cii"i from a unit sinusoidal transmission error amplitude ?j = 1. 
An equation comparable to Eq. (2.60) can, of course, be written to 
replace and.interpret Eq. (2.44). 

It is instructive to examine the low and high frequency 
asymptotic behavior of the two transfer functions Q 

$6 
(w) and 

QI IIh) in Eq. (2.60). Let us consider first the w frequency 
behavior of &II (WI. Substituting Eq. (2.51) into Eq. (2.58) gives 
after minor rearrangement 

R~N,,(w)+N,,(w)]-D(w) 
Q,,(w) = - D(w) 

. (2.61) 

Retaining terms proportional to w and w2 in NII(w) + N21(w) and in 
D(w) in the numerator of Eq. (2.611, and retaining the term propor- 
tional to w in the denominator D(w) of Eq. (2.61), we find that 
the terms proportional to w in the numerator vanish identically 
leaving for our final asymptotic result as w * 0, 

c c +c c 
QII(w) - -i ca+ ' 2 2 3 

I 
w 

‘1+‘2+‘3 R2(cI)-' 
,w+o (2.62) 

which gives the low frequency asymptotic behavior of the transfer 
function &II(w) . Notice from Eq. (2.62) that &II(w) -f 0 as 
w -f 0, and that the strength of every term in Eq. (2.62) depends 
fundamentally on one or more of the system damping constants 
C C 1' 2’ 

C or c 
3 a' 

Turning now to the high-frequency asymptotic behavior of 
&II(w), we have by retaining only the term proportional to w6 in 
D(w) and the term proportional to w4 in NII(w) + N21(w) in 
Eqs. (2.57) and (2.55) respectively as w * 00, 

HlI+H21 - - 
R$)-’ (I1 +I2 > 

1112w2 (2.63) 

where we have again used Eq. (2.51). From Eq. (2.58), we see that 
the asymptotic high frequency behavior of &II(w) therefore can be 
expressed as 
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QII(w) - - 
R2(c,)-'(11+12) 1 ,w+m. (2.64) 

II12W2 

Thus, as w*a, the magnitude of the transfer function &II(w) 
approaches unity. 
QI1 b > from 

Moreover, for large enough w, the deviation of 
-1 is independent of system damping and, in our case, 

depends primarily on R2(cI)-'/I2 since 11>>12. H6??W69, referring to 

Eq- I2.601, we see that as w+O, no dynamic forces arise in the 
test gear mesh I from the static transmission error t; of that same 
mesh, whereas as w-tm, the inertias I 
motion of degrees of freedom 8 and i2 

and I2 prevent al2 vibratory 
in the test rig shown in 

Fig. 1 resuZting in "fuI2 tranifer" of the static transmission 
error t; to dynamic forces in mesh I. 

Let us turn now to the transfer function &I II(w) which con- 
trols the forces generated in mesh I by the static transmission 
error in mesh II. 
;yf E&&W)') 

To examine the asymptotic low frequency behavior 
we retain the term proportional to w in D(w) as given 

2.57 and the term proportional to w2 in NIII(w) + N211(w) 
as given by Eq. (2.56). According to Eqs. (2.52) and (2.59), the 
retention of these two terms gives as w+O, 

= -i Ca+c y:, 
1 2 3 I 

W 

R2(cI)-l 
,w+o. (2.65) 

Thus, as w-+0, Q I II(W) 1 a so tends to zero as did &II(w). Moreover, 
the right-hand side of Eq. (2.65) depends fundamentally on the 
system damping constants c , c 
to the right-hand side of hq. 

2’ 
c , and c , and is very similar 

Q,,(w) as w-to. For c 
(2.6:) whichagoverns the behavior of 

3 
=O, the second term in the right-hand side of 

Eq. (2.65) vanishes. 

To study the high frequency asymptotic behavior of &I II(w), 
we retain the term proportional to w6 in D(w) and the term 
portional to w4 in NIII(w) + N211(w). 

pro- 

(2.56), (2.57), 
According to Eqs. (2.52), 

and (2.59), we then have for the asymptotic behavior 
of QI ,,(.w) as w-+03, 
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Q 
R2(CII)-l 

1 1,C.w) - 1 w2 , w+- 
1 

which depends on the parameter R2(cII )-'/I1 and tends to zero as 
w-to3 . Hence, referring to Eq. (2.601, we see that in both Zimiting 
cases as w-t0 and w-tm, 
mesh I from the static 

no dynatilic forces ari,se in the test gear 

mesh II. 
transmission error <-JI of the sZave gear 

For intermediate frequencies O<w<m, however, finite 
forces will arise in mesh I from the static transmission error 
in mesh II. 
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THE RESPONSE 

We shall now combine the excitation Fourier series repre- 
sentation with the system transfer functions to predict response 
metrics of interest. 

Mesh and Bearing-Support Dynamic Load and Spectrum 

Since the test gears shown in Fig. 1 are assumed to move in 
(unsteady) pure rotation, the time-varying force magnitudes WI(t) 
in the test gear mesh must equal the time-varying force magnitudes 
in the bearing supports, as illustrated in Fig. 1. Recalling from 
Eq. (2.22) that T~/R is the time-average force W0 in mesh I, we 
can express WI(t) as 

w*(t) = T,/R + aWI(t) , (3.1) 

where SWI(t) represents the deviation of WI(t) from its time- 
average value T~/R. From Eq. (2.60) and the Zinearity of the 
Fourier transformation operation, we see that 6WI(t) can be de- 
composed into two components - a component 6WII(t) arising from 
the static transmission error excitation from the test gear mesh I, 
and a component cSWI II (t) arising from the static transmission error 
excitation from the slave gear mesh II. Hence, we may write 
Eq. (3.1) as 

w,(t) = ra/R + GWII(t) + &WI II(t). (3.2) 

Since in our predictions we are taking into account only the tooth 
meshing harmonics of the static transmissions error of meshes I 
and II, it follows from Eq. (2.60) that GWII(t) is a periodic 
function with period equal to the tooth meshing period of mesh I 
and &WI ,,(t) is periodic with period equal to the tooth meshing 
period of mesh II. Thus, GWII(t) and 6WI II(t) may be represented 
by complex Fourier series, 

BW**W = 2 n=-maWII(n)e 
i27rnfIt 

and 

6WI ,,W = ngwawI IIb-de,i2Tnf11t 

(3.3) 

(3.4) 
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I - ~~ 

@ /._, 
where fI and fII are the tooth meshing fundamental frequencies of 
meshes I and II respectively, which can be expressed as 

fI = NI(rpm)/60 (3.5) 

and 

fII = NII(rpm)/60. (3.6) 

NI and NII are the numbers of teeth on the test and slave gears 
respectively, and rpm denotes the number of revolutions per minute 
of all shafts in the test rig. cw11(") and clwI II(n) denote comp- 
lex Fourier series coefficients. 

It follows from the relationship between the Fourier trans- 
form and Fourier series delineated in Appendix G of Reference 4 
[especially Eq. (~6)l that we may express the complex Fourier 
series coefficients of 6WII(t) and 6WI II(t) with the aid of 
Eqs. (2.60) and (3.2) through (3.4) as 

awII(n) = (~I)-lQII(~nI)~mnI (3.7) 

and 

cw1 II(n) = (c,)+Q (w >a I II nI1 mnI1' (3.8) 

where 

W = 2rnfI (3.9) n1 

WnII = 2nnfII, (3.10) 

and where c1 and cmnII denote, respectively, the complex Fourier mn1 
series coefficients cmn given by Eq. (1.5) for the static trans- 
mission errors arising from meshes I and II. As Eq. (1.5) in- 
dicates, amnI and amnII is each the sum of three components that 
are the Fourier series coefficients of the three terms on the 
right-hand sides of Eqs. (2.22) and (2.23) respectively. The 
transfer functions Q,,(w) and &I II(w) are defined by Eqs. (2.58) 
and (2.59) respectively. 

The temporal behavior of &WII(t) and 6WI II(t) can be con- 
structed from the Fourier series coefficients, Eqs. (3.7) and 
(3.8), using Eqs. (3.3) and (3.4). These quantities are then 
added to T /R to yield the temporal behavior of the mesh and bear- 
ing supper? forces WI(t) as indicated by Eq. (3.2). 
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Finally, assuming that the "phase" between the teeth of 
meshes I and II is unknown, we may express the one-sided power 
spectral density of W,(t) as 

@WI (f = (Ta/R)2s(f) + ). 21aWII(n)/26(f-nfI) 
n=O 

+ n$02iawI II(n)126Cf-nfII) , (3.11) 

where we have been aided by Eq. (109) of Reference 4. In 
Eq. (3.111, 6(*) denotes the Dirac delta function; hence, 
Eq. (3.11) describes a line spectrum with a dc contribution aris- 
ing from the mean force T,/R and additional contributions arising 
from the tooth meshing harmonics nfI of the test gear mesh I and 
nfII of the slave gear mesh II. Notice from Eqs. (2.62) and 
(2.65) that &II(w) and QI II(w) both vanish at w=O, so we see from 
Eqs. (3.7) and (3.8) that no dc contributions arise from the terms 
n=O in the two sums in Eq. (3.11). 

Dynamic Force on a Single Tooth 

We turn now to obtaining an expression for the time-varying 
root stress on a typical tooth of the test gears. We first re- 
quire the time-varying force on a typical tooth. Let us denote 
this force by WIj ' (t). Here, W denotes force, I denotes that the 
test gears have been designated as mesh I, j denotes tooth number 
used here as a reminder that Wt Ij (t> represents the force on a 
single tooth only, and the dagger denotes that here we are con- 
sidering time to be our independent variable rather than the 
lineal variable x = R8 used earlier - e.g., in Eqs. (1.2) and 
(1.3). For a fixed speed of rotation there is, of course, a 
one-to-one corregpondence between x and t that is determined by 
x(t) = R@(t) = RB(t-to), where t is a fixed reference time. 

0 

t Let Ksj (t) denote the stiffness of tooth pair j as defined 
by Eq. (1.16) except that here time is our independent variable. 

t Stiffness Ksj (t) varies with time because of the temporal variation 
of the line of contact on the tooth faces as the gears rotate. 
Let ut(l) 

j 
(t) and u?(~) (t) denote the elastic deformations of tooth 

pair j of gears (13 and (2) of test gear mesh I. Then it follows 
directly from Eqs. (5) and (.8b) 
above that for spur gears with u 

7f)Reference 4 and Eq. (1.16) 
and u(~) independent of axial 

location y we have 
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W;j(t) = Kij (t)[u:(l)(t)+u:(2)(t)] - (3.12) 

Let <iI denote the dynamic transmission error of test gear 
mesh I. Subscript m denotes that we are considering here only 
the effects of the mean profile modification as described in 
Reference 4 and Section 1 of the present report. The dynamic 
transmission error C:,(t) is identical with the quantities de- 
scribed by Eqs. (2.11) and (2.13) except that here t is the in- 
dependent variable. Let rnijl) (t) and rnAi2) (I-,) denote the mean 
profile modifications of teeth j on gears (1) and (2) of the test 
gear pair. These modifications are identical with the definition, 
Eq. (1.24), except that here time is again considered to be the 
independent variable as denoted by the dagger superscripts. Then, 
according to Eqs. (5) and (6) of Reference 4 when no random tooth 
face errors are present, we have 

J(l) 
j 

(t) + uy2) (t) = 7&(t)-m~~1)(t)-m~~2)(t) , 

which, when substituted into Eq. (3.12) gives 

W:j(t) = Kij(t) ~~I~t)-m~~1'(t)-m~~2'(t) 1 . 

(3.13) 

(3.14) 

Equation (3.14) is the spur gear counterpart to Eq. (8~) of Ref- 
erence 4 when no random tooth face errors are present. 

Rewriting Eq. (2.13) using our present notation gives for 
the dynamic transmission error 

&t) = C,W,W + c;(t) , (3.15) 

where we recall that WI(t) is the total force transmitted by the 
test gear mesh I and <i(t) is the static transmission error of 
mesh I as defined by Eq. (2.12). If we again denote Fourier 
transforms of quantities by placing a caret over the transformed 
variable, we have for the Fourier transform of 

tt m1 = c* iG* + ;; . 

Multiplying both sides of Eq. (2.60) by CI and 
resulting expression into Eq. (3.16) gives for 
form of the dynamic transmission error of mesh 

Eq. (3.15) 

(3.16) 

substituting the 
the Fourier trans- 
I 
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p = 
m1 C l+QII(w) I t; + QI IIh)i;I , w # o, (3.17) 

where Q,,(w) and &I II(w) are defined by Eqs. (2.58) and (2.59) 
respectively, and ?;I is the Fourier transform of the static 
transmission error of mesh II as defined by Eq. (2.12). 

Equation (3.17) shows that the dynamic transmission error of 
mesh I is made up of three components, a direct component t' I equal 
to the static transmission error of mesh I, an indirect component 
whose transform is QII(.w)?; that represents the contribution to 
rt mI resulting from the system dynamic response to <;, and finally, 
a component whose transform is &I II(w)t;I resulting from the 
system dynamic response to the static transmission error <iI of 
the slave gear mesh II. From Eqs. (2.62) and (2.65), we have 
found that &II (w> and QI II (w) both tend to zero as w+O so that 
for sufficiently small w it follows from Eq. (3.17) that t:I and * 
G coincide - that is, the dynamic and static transmission errors 
of mesh I become identical for very low frequencies of excitation 
(as expected). 
Eqs. (2.64) 

On the other hand, as w+~, we have found from 
and (2.66) respectively that Q,,(w) -f -1 and 

Q I II(w)+O, so that for sufficiently large w it follows from 
Eq. (3.17) that the dynamic transmission error <:I of mesh I tendsto 
vanish. This is the mathematical manifestation of the fact that, 
for sufficiently high frequencies of excitation, the inertia of 
the gears preventsthe static transmission errors of meshes I and 
II from causing any substantial lack of uniformity in the rate of 
rotation of 

Let us 

the test gears. 

now define 

(3.18) 

and 
A-f 
'm1 II !$Q * **(dt;* 3 (3.19) 

which, respectively, are the Fourier transforms of the contributions 
of the static transmission errors of meshes I and II to the Fourier 
transform of the dynamic transmission error f:I of mesh I - i.e., 

p i;“t 
m1 = mI1 + $A II ' 
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Then, 
P 

denoting the inverse Fourier transforms of 5mII and 

m1 II' respectively, by 

3 mII(t) = F-l[:;II] 

= F [l+QIIh)It; 
> 

(3.21) 

and 

CL1 ,,(t) = F-‘[& ,,I 

= F-'[QI ,,(w)t;,l, (3.22) 

where we have used Eqs. (3.18) and (3.19), we then have by sub- 
stituting the inverse transform of Eq. (3.20) into Eq. (3.14) 

W:j(t) = K~j(t) II(t)-mL:l)(t)-mSj t(2)(t)] (3.23) 
J. 

Equation (3.23) expresses the dynamic force W'.(t) trans- 
mitted by a typical tooth pair j of the test gear &&sh I in terms 
of the tooth pair stiffness K ij(t) of the same two teeth, the 

t dynamic transmission error contributions Z,iII(t) and <,I II ct> to 
mesh I from the static transmission errors of meshes I and II re- 
spectively, and the profile modifications m 'i')(t) and rnii2)(t) of 
the two meshing teeth in contact. Quantitizi m;!)(t) and m;?)(t) 
are considered positive when they are "equivalen 11 to remova 1 of 
material from perfect involute surfaces. J. I 

The dynamic transmission error components <m,,(t) and SmI II(t) 
are to be evaluated using Eqs. (3.21) and (3.22). To carry out 
this evaluation we recognize that f; contains only the tooth 
meshing harmonics of mesh I; hence, we can represent <zII (t> by 
the complex Fourier series 

(3.24) 

where f I is the tooth meshing fundamental frequency of mesh I to 
be evaluated using Eq. (3.5). Similarly, t;I contains only tooth 
meshing harmonics of mesh II; hence, we can represent <iI II(t) 
by the Fourier series 
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CL1 **(t) = g armI II(n)ei2anf11t ' 
n=-cn 

(3.25) 

where f,, is to be evaluated using Eq. (3.6). The complex Fourier 
series coefficients ~1 <mII(n) and cSmI II(n) in Eqs. (3.24) and 
(3.25) are to be evaluated from the Fourier series coefficients 
of the static transmission errors 5; and. 5iI of meshes I and II 
with the help of Eqs. (3.18) and (3.19) - i.e., 

aymII(n) = [~+Q&J'~~)I~~~~ , (3.26) 

and 

ymI IIh~ ( >a = '1 II WnII mnI1' (3.27) 

where w n1 and w nII are defined by Eqs. (3.9) and (3.10) respec- 
tively, the cmnI, n=O,'l,%2,** l are the Fourier series coefficients 
defined by Eq. (1.5) of the static transmission error of mesh I, 
and the c1 are the Fourier series coefficients defined by 
Eq. (1.5)m@1the static transmission error of mesh II. Each of 
these Fourier series coefficients is the sum of three terms as 
indicated by Eq. (1.5). 

The left-hand sides of Eqs. (3.26) and (3.27) are the com- 
plex harmonic amplitudes of the contributions to the dynamic 
transmission error of mesh I from the static transmission error 
harmonic amplitudes of meshes I and II respectively. The right- 
hand side of Eq. (3.26) exhibits a "direct self" contribution 
c% mnI from the static transmission error plus the dynamic incre- 
ment contribution QII(wnI)amnI , whereas the right-hand side of 
Eq. (3.27) Q (w >a I II nI1 mnI1 is the increment to mesh I from 
mesh II which arises from dynamic effects only. (We have shown 
earlier by Eqs. (2.62) and (2.65) that &II(w) and &I II(w) both 
tend to zero as w-+0. Hence, for i = I or II and j = I or II, 
Qij(w) represents the dynamic contribution to the (dynamic) 
transmission error complex harmonic amplitude at mesh i from a 
unit amplitude harmonic component of the static transmission 
error at mesh j. This fact suggests that the term "transmission 
error dynamic increment function" or the more brief term "dynamic 
increment function" be applied to the transfer functions Qij(w). 
This concept, and the foregoing analysis, readily generalizes to 
gearing systems with an arbitrary number of dynamically interact- 
ing meshes. 
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Equations (3.23) through (3.27) are one set of final expres- 
sions for evaluation of the temporal behavior of the forces 
Wt Ij(t) transmitted by a typical pair of teeth on the test gears. 

Decomposition of dynamic singZe tooth force into static and 
dynamic increment contributions. Instead of using the form of 
Wzj(t) given by Eq. (3.231, we can again begintwith Eq. (3.14) 
and decompose the dynamic transmission error c,I(t) of mesh I into 
the original static transmission error S,I(t) of mesh I plus 
dynamic increment contributions to mesh I arising from meshes I 
and II - i.e., 

s;,(t) = c,*(t) + 65;**(t) + 6& **(t) , (3.28) 

where CmI(t) is the static transmission error of mesh I defined by 
Eqs. (1.3) through (1.5), and 6<AII and 65LI II(t) are the dynamic 
increments to the transmission error of mesh I arising from 
meshes I and II respectively. Then, by substituting Eq. (3.28) 
into Eq. (3.14), we see that the dynamic force Wt 
decomposed into components Wljo 

Ij(t) can be 
(t) and 6Wt (t) arising, respectively 

13 
from the static transmission error <,I (t) and the dynamic incre- 
ments 6CLII (t> + 65iI I*(t) - i.e., 

Wfj(fI) = wZjo(t) + sw;j(t) , (3.29) 

where 

(3.30) 

and 

The static transmission error <,I (t> can be expressed in terms of 
its Fourier series coefficients cx mn1 by 

5,*(t) = c "mnIe 
i27rnfIt 

2 (3.32) 
n=-cc2 
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where f is the tooth meshing fundamental frequency of mesh I to 
be evalzated using Eq. (3.5), and the cmnI are the Fourier series 
coefficients of the static transmission error of mesh I defined 
by Eq. (1.5). The dynamic increment BC?II(t) can be represented 
in terms of its Fourier series coefficients QII(w~I)cx~~I by 

(3.33) R:,,(t) = 2 QII(wnIhmnIe 
i27TnfIt 

J n=-co 

t and the other dynamic increment 6<,I II(t) can be represented by 

":I IIct) = 2 '1 II(WnII)UmnIIe' 
i27TnfIIt 

(3.34) 
n=-co 

where w n1 and w nII are defined by Eqs. (3.9) and (3.10) respec- 
tively, fII is the tooth meshing fundamental frequency of mesh II 
to be evaluated using Eq. (3.6), and the amnII are the Fourier 
series coefficients of the static transmission error of mesh II 
defined by Eq. (1.5). The transmission error components in Eqs. 
(3.23) and (3.28) are related by 

S;**(t) = S,*(t) + sr;r?;,,w , (3.35) 

and 

5;* *I(t) ! 6& ,,w . (3.36) 

The representation of the dynamic force on a single tooth 
by Eqs. (3.29) through (3.34) has the advantage of separating out 
the force increment 6W' Ij(t) arising from the dynamic response of 
the gearing system. Notice from Eqs. (3.33) and (3.34) that 

'IICwnI) and '1 IICWnII ) govern the dynamic response contributions 
from the static transmission errors of meshes I and II to the 
force increment 6WIAi t (t>. Furthermore, since &II(O) = 0 and 
&I II(O) = 0, we see from Eqs. (3.31), (3.331, and (3.34) that 
when all cmnI and cmnII are zero except for n = 0, we have 
&W;;(t) = 0. Hence, when the fzuctuating components of the static 

(3.311, t&&mission errors of meshes I and II are zero, Eqs. 
I imply that no force increment 6wt 

*J 
(3.33), and (3.34 
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singZe tooth arises from the dynamic response of the gearing 
system. 

Finally, we note that a somewhat more accurate expression 
for the total mesh force WI(t) than that given by Eqs. (3.2) 
through (3.10) can probably be obtained by summing the indivi- 
dual tooth forces W:,(t) given by Eq. (3.29) over all teeth 

IJ 
contact at any given instant of time. However, in carrying 
this summation, care must be exercised to take into account 
appropriate "time delays" of the individual tooth forces. 

in 
out 
the 

Root Stress on a Single Tooth 

Cornell [8] has modified a formula developed by Heywood [g] 
for the root fillet tensile stress in a gear tooth. Additional 
comments by Heywood and others on this problem appear in the 
discussion of the paper by Kelley and Pederson [lo]. Cornell's 
modification of the Heywood formula is readily adapted to the 
geometry of gear teeth of nominal involute design - his modifica- 
tion can be expressed as 

r 
0 = 

wj cos4; 
I 
1+o-26 3 

x ,!$+ (;;;p 

( 

; 

‘) 0.. 7- 
I 

1 

hW 
j 

tan 4;. 
1-h vtan $; - h 

S I S I 
(3.37) 

where c is the root stress and W. J is the tooth loading denoted by 

'Ij in the case of mesh I, and given by Eqs. (3.23) or (3.29). 
The remainder of the notation in Eq. (3.37), and expressions for 
the parameters contained therein, are contained in Appendix B of 
this report. The procedure developed by Cornell [8] for determina- 
tion of the position of the maximum root fillet tensile stress 
also is described in Appendix B. 
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PROFILE DESIGN FOR MINIMUM EXCITATION 

Profile Modification to Compensate for Tooth and 

Gear Body Deformations at the Design Loading 

Let C(X) denote the (dynamic) transmission error as defined 
in Reference 4 and expressed by Eq. (2.6) of this report. Here, 
the transmission error is expressed as a function of the coordi- 
nate x, which can be related to the angular position 8 of either 
gear of a meshing pair by Eq. (1.2). The requirement that the 
teeth of the gear pair remain in contact at each value of x 
dictates [4] that the tooth surfaces must move together relative 
to the tooth surfaces of rigid perfect involute gears by the 
distance 

c(x) = u:')(x) + ui2)(x) + m!')(x) + m:')(x) J 9 (4.1) 

where u(')(x) and U(~)(X) . . are the elastic deformations of the jth 
(meshing) teeth on iears (1) and (2), and m!l)(x) and m!2) (x) are 
the modifications of the profiles of the same teeth on iears (1) 
and (2) from perfect involute profiles. (0) and 
m( l > 

Quantities 5, u, 
are measured in a direction defined by the intersection of 

the plane of contact and the transverse plane. 
and m;*)(x) 

Quantities us')(x) 
are defined as positive when they are "equivalent" to 

remova of material from the surfaces of unloaded, perfect, uni- 
formZy spaced involute teeth [4]. Thus, a positive value of c(x) 
corresponds to tooth surfaces coming together relative to those 
of rigid perfect involute gears. 

It follows from the definition of the static transmission 
error that if a real pair of meshing gears is to transmit exactly 
uniform angular motion then r(x) must be a constant [ll-131. In 
addition, however, if we wish to insure that the tooth faces under 
loading take on the form of perfect uniformly spaced involute teeth, 
we must require that the tooth faces from each gear be modified to 
compensate for their own elastic deformations - i.e., that the geo- 
metrical deviation of each tooth face take on the form 

m:')(x) = -u;')(x) (4.2a) 

mj2)(x) = -uj2)(x) (4.2b) 

which will yield zero static transmission error, C(x) = 0, when 
combined with Eq. (4.1). When Eqs. (4.2a) and (4.2b) are both 
satisfied, we are guaranteed that all tooth pair contact remains 
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in the plane of contact; however, satisfaction of the singZe 
condition 

rp(X) + mj(2+x) = - u;1)(x)+u;2)(x) 
[ 1 (4.3) 

will not guarantee this behavior, and therefore, will not uaran- 
tee the transmission of exactZy uniform angular motion [14 . 

To evaluate the right-hand sides of Eqs. (4.2a) and (4.2b), 
we require the loading Wj(x) carried by each tooth pair j in 
contact, as well as the appropriate stiffness characterizations. 
The tooth pair loadings Wj(x) must be constrained by the relation- 
ship: 

Wd = ' 'j(') ' j 
(4.4) 

where Wd is the total loading transmitted by the gear pair, where 
the summation over j in the right-hand side includes all tooth 
pairs in contact, and where all forces in Eq. (4.4) are in the 
direction defined by the intersection of the plane of contact 
and the transverse plane. The constant force Wd is the design 
Zoading of the gear pair for minimum vibration excitation. Follow- 
ing Harris [ll, 121 and Remmers [13], our design approach will be 
to specify the individual forcing functions Wj(x) so that the 
overall loading constraint, Eq. (4.4), is satisfied. In particular, 
this design approach permits us to control the individual tooth 
loading functions Wj(x) at the initiation of tooth contact. 

Let c:Ji(x) denote the influence function [15] that describes 
the surface deformation of the contact patch of tooth j on gear 
(0) due to a "unit" loading of the contact patch of tooth j' on 
the same gear, as illustrated in Fig. 2. The center positions of 
the contact patches are determined by the rotational position 8 c-1 

of gear (0) as described by the lineal variable x = Rb w,w J 
where all superscripts (0) refer to the same gear of the pair. 
The direction of all such deformations and loadings is defined by 
the intersection of the plane of contact and the transverse plane. 
The width 2b of the contact patch on tooth j and the semi-elliptical 
pressure distribution under this contact patch are determined by 
the prescribed loading Wj(x) transmitted by tooth pair j and the 
two Zocai! radii of curvature of the jth teeth on gears (1) and 
(2) at their contact point - as determined, e.g., from Eqs. (235) 
and (236) on p. 418 of Reference [16]. Thus, the influence func- 
tions c:;!(x) include bending, shear, Hertzian contact, and gear 
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Tooth j 

t-1 
C j jAxl 

Plane of Contact 

Unloaded Tooth 

FIG. 2. ILLUSTRATION OF THE INFLUENCE FUNCTION cjj, t*)(x) 
FOR THE CASE j#j'. 
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body deformations, where these latter deformations are particularly 
important in determining the deformation of one tooth caused by 
loading on another tooth, which is the case jl # j illustrated in 
Fig. 2. The influence functions c (-> jj,(x) can be computed using 
finite element techniques; however, particular care must be exer- 
cised to insure accurate computation of the contact deformation 
component. 

From the influence functions and the prescribed loading func- 
tions, we can compute the deformation of tooth j on gear (*) as a 
function of x by superposition 

uy(.x) = c cg(.x) Wj,(.X) , - I J 
(4.5) 

where the summation over j' includes all teeth in contact at posi- 
tion x = Rb W,!*) By combining Eq. (4.5) written for gears (1) 
and (2) of the meshing pair with Eqs. (4.2a) and (4.2b), we obtain 
our final profiZe modification formulas for spur gears: 

m;')(x) = -C cafe wjr(x) 
J 

qx) = 
mj 

-i' p) 
* 1 J 

jjl(') wjl(x) , 

(4.6a) 

(4.6b) 

where the loads Wj(x) transmitted by the individual pairs of teeth 
are subject to the constraint, Eq. (4,4), and where a positive 
value of m(')(x) corresponds to “remova2” 

j 
of material from a perfect 

involute profile. From Eqs. (4.6a), (4.6b), and (4.4), we see that 
it is possible to modify the profiles of both gears of a meshing 
pair to completely compensate for tooth deformations only at a 
single design loading Wd. 

Thus far, we have ignored the thickness of the layer of lubri- 
cant between pairs of meshing teeth. These effects could be in- 
cluded, if known, by adding one-half of the local layer thickness 
to the right-hand sides of Eqs. (4.6a) and (4.6b). 

D&scussion: When the profile modifications m 5" (x> and mj2)(x) 
of all teeth on a pair of meshing gears are machined to exactly 
satisfy Eqs. (4.6a) and (4.6b), the static transmission error of 
that gear pair is set equal to zero when the gears are operating 
at the design loading W . 

4 
For the present discussion, let us assume 

that the profile modifi ations of the test gears, shown as mesh I 
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in Fig. 1, have been machined so as to satisfy Eqs. (4.6a) and 
(4.6b). In this case, all Fourier series coefficients 
cc mn1 n = *1,+2,... of the static transmission's error are identi- 
cal to zero. It then follows from Eqs. (3.3) and (3.7) that the 
time varying component GWII(t) of the mesh and bearing force 
attributable to mesh I in Eq. (3.2) is identically zero. Similarly, 
if the teeth of the slave gears in mesh II were modified according 
to Eqs. (4.6a) and (4.6b), the time varying force component 
&WI ,,(t) in Eq. (3.2) attributable to the slave gears would be 
identically zero as can be seen from Eqs. (3.4) and (3.8). 

Turning now to the dynamic force components on a single tooth, 
we recall that 6Wt ,j(t) given by Eq. (3.31) is the component of the 
force history on a single tooth of mesh I attributable to the 
vibratory excitation from meshes I and II. Examination of 
Eqs. (3.31), (3.33) and (3.34) shows that when the teeth of the 
gears in meshes I and II are designed according to Eqs. (4.6a) and 
(4.6b) to eliminate the static transmis?ion errors of those meshes, 
their corresponding contributions to 6W ,j(t) vanish thereby eliminat- 
ing 6Wlj(t). Furthermore, we see from Eq. (3.32) that SmI(t) also 
vanishes in this case, thus leaving 

wzjo(t) = -Kij(t) m~~l)(t)+m~~")(t) 1 (4.7) 

as the time-varying force history on a typical tooth of mesh I. 

Each of the single tooth loading components in Eqs. (3.29) 
through (3.31) gives rise to a corresponding component of root 
stress. Thus, when the static transmission errors of the mesh 
and slave gears are eliminated at a design loading Wd, the com- 
ponents of root stress arising from the single tooth loading 
component 6W+ Ij(t) of Eq. (3.31) are eliminated, and the resultant 
root stress is that resulting from the tooth loading component 
given by Eq. (4.7). 

Families of Tooth Loading Functions 

The design procedure suggested in the previous section is to 
modify the profiles on the teeth of two meshing gears as pre- 
scribed by Eqs. (4.6a) and (4.6b), where the loading histories 
Wj(x) on the individual teeth must satisfy the constraint given 
by Eq. (4.4). This procedure is most easily carried out by speci- 
fying the loading histories W (x) subject to the constraint, Eq. (4.4), 
and then solving for the profile modifications given by Eqs. (4.6a) 
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and (4.6b). We recall according to Eq. (1.2) that independent 
variable x is the roll distance 

X 
= R(l)@ 

b (4.8) 

c-1 which is common to both meshing teeth, and Rb and 0(*) are the 
base circle radius and the roll angle of each gear of the meshing 
pair where (*> designates the gear (1) or (2) of the pair as 
appropriate. 

Initially, let us restrict our considerations to spur gear 
pairs with contact ratios between one and two. There exists an 
infinite number of individual tooth loading histories Wj(x) that 
satisfy Eq. (4.4). Figure 3 illustrates the individual tooth load- 
ing histories Wj(x) and the manner in which they add up to satisfy 
the constraint, Eq. (,4.4). The ordinate of Fig. 3 is force trans- 
mitted between the teeth of driving and driven gear in the direction 
defined by the intersection of the plane of contact and the trans- 
verse plane. The abscissa in Fig. 3 is roll distance x = RbO. 
Alternating intervals of single tooth pair contact and two tooth 
pair contact are shown in the figure. The.heavy line represents 
the loading and unloading force history W.(x) on the jth tooth of 
one of the pair of meshing gears. The dadhed lines illustrate the 
force histories on teeth j-l and j+l as indicated. The roll dis- 
tance interval during contact of a particular tooth is L and the 
base pitch is A. 

In order for the condition indicated by Eq. (4.4) to be satis- 
fied during regions of single pair contact, the design loading Wd 
must be carried by that tooth pair as indicated in Fig. 3. On the 
other hand, during regions of two tooth pair contact, the total 
loading Wd must be shared by the two tooth pairs in contact. This 
requirement means that distances A and A' shown in Fig. 3 must be 
identical. 

If the direction of rotation of the gear pair were to be re- 
versed, and if in this reversed situation the former driving gear 
becomes the new driven gear and vice versa, the "loading side" of 
the teeth in the former situation also remainsloaded in this re- 
versed situation. This reversed situation in effect reverses 
the direction of the x-axis in Fig. 3. This reversal of the direc- 
tion of the x-axis suggests that it is reasonable to require the 
tooth loading histories W.(x) to be symmetric about the midpoint 
X of the tooth contact iAterva1 L - i.e., to require that 

0 

(4.9) 
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(Xl x; / \ 

wj +l Ix) 

FIG. 3. TOOTH LOADING FUNCTION FOR CONTACT RATIO BETWEEN 
ONE AND TWO. 
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In particular, this condition implies that the abruptness of loading 
onset and loading release on a given tooth be the same. Whenever 
the condition of Eq. (4.9) is met, one can readily see from the 
periodicity of the individual loading curves in Fig. 3 that dis- 
tances A' and B must the same; hence, the symmetry requirement 
Eq. (4.9) together with the loading constraint Eq. (4.4) jointly 
imply that distances A and B in Fig. 3 be the same. In other words, 
the singZe tooth Zoading curve in a region of two tooth pair contact 
must be an odd function about the axis W = Wd/2 when Eqs. (4.4) and 
(4.91 are satisfied. Finally, within each region of two tooth pair 
contact, we should like to require that practical tooth loading 
curves be monotonic, which implies that the slope of the tooth 
loading curve not change sign within that region. Sketches of 
tooth loading functions have appeared in References 11 and 13. 

The non-constant portions of tooth loading functions satisfying 
the mirror image property, Eq. (4.9>, are defined entirely by their 
behavior within a single two tooth pair contact region as is easily 
seen from Fig. 3. Let us define a new independent, dimensionless 
roll distance variable 

(4.10) 

where x' is the center of the two tooth pair contact region as 
illustrlted in Fig. 3. Thus, the new normalized roll distance 
variable ranges from -1 4 x,< 1 within the two tooth pair contact 
region. Let us also define a dimensionless tooth loading variable 

wj 4 
Wj-(wd/2) 

wd'2 
(4.11) 

which also ranges from -1 < w. < 1 when W 
J J 

ranges from 0 to Wd. 

A simple family of tooth loading functions that satisfy all of 
the above mentioned criteria is the family - Wj (X) = x + L;z c 1 sin(nx) , -l,<X,<l (4.12) 

where for u.(x) to remain monotonic, we must have 0 Q s < 2. The 
parameter gJis the sZope of w 

j (x) at x = -1, i.e., 
- 

g= dWj (4.13) 
dx X=-l. 
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Figure 4 illustrates the behavior of Eq. (4.12) over the range of 
values of s for which Wj(x) is monotonic. 

For tooth pairs with profile modifications designed using 
Eqs. (4.6a) and (4.6b), the sensitivity of the actua2 roll distance 
contact range L to variations of the actual mesh loading from the 
design loading Wd depends strongly on the slope of profile modifica- 
tion at the points of tooth contact initiation and termination. 
This profile modification slope, in turn, depends strongly on the 
slope of the tooth loading functions W.(x) at points of contact 
initiation and termination which is govhrned by the dimensionless 
slope s defined by Eq. (4.13). [Recall that s also controls the 
slope at contact termination because of the mirror image property 
Eq. (4.9)]. Thus, if it is desirable to minimize changes in the 
actual value of L over a wide range of mesh loadings, then a large 
value of s should be used in the profile modification design 
loading function mj(x). We can see from Eq. (4.12) or Fig. 4 that 
the sinusoidal-based loading function is limited to initial dimen- 
sionless slopes s less than or equal to 2 if it is to remain mono- 
tonic. 

A second family of tooth loading functions that does not have 
this limitation is the polynomial-based normalized family 

- S-l -r “s (.X) = s x + r-l x , -l<X<l (4.14) 

where the parameter r is permitted to take on only the odd integer 
values r = 3,5,7,-a*. This definition of wj(x) remains monotonic 
provided that the initial (dimensionless) slope s remains within 
the range 0 < s \< r. Thus, if a large value of s is desired, a 
correspondingly large value of r must be chosen in the loading 
function, Eq. (4.14). 

Figures 5 and 6 illustrate the normalized families of tooth 
loading functions of Eq. (4.14) for values of r = 3 and 7 respec- 
tively. From these two figures, we see that as r is increased 
the loading function of Eq. (4.14) permits an ever increasing 
initial slope s of Wj(x) while retaining its monotonic increasing 
character. Figure 7 shows how the loading functions of Eq. (4.14) 
vary when the initial slope s is held to the constant value s = 3, 
while r is varied from values of 3 to 9. 

Figures 4 through 7 collectively illustrate the considerable 
flexibility of shapes available in the two families of loading 
functions described by Eqs. (4.12) and (4.14). Notice that 
Eqs, (4.12) and-(4.14) both reduce to the same linear function 
Wj(x) = x when s is taken to be unity. 
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NORMALIZED ROLL DISTANCE, K 
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FIG. 4. NORMALIZED SINUSOIDAL-BASED FAMILY OF TOOTH 
LOADING FUNCTIONS. 
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r=3 

-1 0 1 
NORMALIZED ROLL DISTANCE, K 

FIG. 5. NORMALIZED POLYNOMIAL-BASED FAMILY OF TOOTH 
LOADING FUNCTIONS FOR r = 3. 
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-1 0 1 
NORMALIZED ROLL DISTANCE,K 

.- 

r=7 

FIG. 6. NORMALIZED POLYNOMIAL-BASED FAMILY OF TOOTH 
LOADING FUNCTIONS FOR r=7. 
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NORMALIZED ROLL DISTANCE, X 

FIG. 7. NORMALIZED POLYNOMIAL-BASED FAMILY OF TOOTH 

LOADING FUNCTIONS FOR ?=3. 
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Families of tooth loading functions satisfying Eq. (4.4) for 
contact ratios larger than 2 can readily be generated. Figure 8 
illustrates a linear tooth loading function Wj(x) for a contact 
ratio between 2 and 3 that satisfies Eq. (4.4). Here, in addition 
to the parameters L and A, and the mesh loading Wd, we have an 
additional free parameter F, where FWd is the maximum value of 
‘j(‘), as can be seen from Fig. 8. For the portion of the tooth 
loading curve Wj(x) to remain monotonic in the region x 4 x , the 
parameter F must be chosen to lie within the range l/2 d F < 1. 

J In practice, F can be chosen to be the value that minimizes the 
maximum root stress of a tooth. 

Examination of each small, dashed, rectangular box in Fig. 8 
shows that the sum of the two individual tooth loading curves within 
each box equals the height of the box. However, this is exactly the 
requirement placed on the tooth loading curves within each two-tooth 
contact region illustrated in Fig. 3. Thus, each straight line seg- 
ment and its mirror image in Fig. 8 could be replaced by any of the 
loading curves shown in Figs. 4 through 7 and their respective mirror 
images to yield various families of curved tooth loading functions - 
all of which would satisfy the fundamental design constraint 
Eq. (4.4) and the symmetry property, Eq. (4.9). In particular, use 
of the polynomial-base family illustrated in Figs. 5 through 7 
permits, for any choice of the parameter F shown in Fig. 8, a com- 
pletely free choice of the slope of Wj(x) at contact initiation 
and termination provided that r is chosen sufficiently large. For 
a given choice of contact initiation slope, minimization of the 
maximum root stress on a tooth might require simultaneous varia- 
tions of the two parameters r and F in the stress minimization pro- 
cedure. (Hertzian) contact stress minimization might also be taken 
into account in such a minimization procedure. 

Excitation Spectra of Tooth Loading Functions 

A tooth loading function, such as that illustrated by the 
heavy line in Fig. 3, has the uotential for exciting vibratory 
motion of the tooth itself [17]. Such potential tooth vibrations 
are more likely to be a problem in high speed gearing, since an 
increase in gear rotational speed will reduce the total duration 
during which a tooth is loaded, thereby "shifting" the spectrum 
of the tooth loading function to the higher frequency range where 
tooth resonance frequencies are found. To assess the potential 
for such excitation of tooth resonant frequencies, the Fourier 
transforms of the tooth loading functions W.(x) are required. 
Each of the dimensionZess loading functions? Eqs. (4.12) and (4.141, 
can be combined with its mirror image to determine a dimensionail 
tooth loading function as illustrated in Fig. 3. The Fourier 
transform of the resulting sinusoidaZ-based loading function with 
origin at x = x is a 

53 



FIG. 8. TOOTH LOADING FUNCTION FOR CONTACT RATIO BETWEEN 
2 AND 3. 

. 
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co 

Fx[Wj (xl; !d 4 Wj (de -i2rgxdx 

= w A sin(TAg) sin[m(L-A)g] l--$L-A)2g2 
d .Tf Ag n(L-A)g 1-(L-A)2g2 

(4.15a) 

(4.15b) 

whereas, the Four‘ler transform of the resulting poZynomiaZ-based 
Zoading function with origin at I"'= x is 

0 

Fx[Wj(x);gl = wdA sin;;;g) 

r = 3,5,7,“’ , S,< r. (4.16) 

The right-hand sides of Eqs. (4.15b) and (4.16) both have the 
form of WdA sin(nAg)/(nAg) times a quantity within curly braces. 
Thus, we can study the effects of the dimensionless slope s at 
contact initiation and termination [Eq. (4.13)] by examination of 
the behavior of the quantities within the curly braces in 
Eqs. (4.15b) and (4.16). Themagnitudes of these quantities are 
plotted on log-log coordinates for the sinusoidal-based loading 
function in Figs. 9a to gd, and for the polynomial-based loading 
function in Figs. 10a to 10d and lla to lid. The ordinate in 
Figs. ga through lid is the (dimensionless) magnitude of the quan- 
tities within the curly braces in Eqs. (4.15b) and (4.16), and 
the abscissa is measured in units of 

q = (L-A)g = $ -1 Ag, ( ) (4.17) 

where g is the transform variable indicated by Eq. (4.15a). 

To interpret the dimensionless frequency q, we note that since 
A is the base pitch, its reciprocal l/A is the tooth meshing fun- 
damental frequency in the frequency units g, which we denote by 
gtooth-mesh' Thus 

Ag - & = g 
A -1 gtooth mesh 

=P, (4.18) 

where p is the tooth meshing harmonic number which is unity at the 
tooth meshing fundamental frequency. Combining Eqs. (4.17) and 
(4.18) gives 
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FIG. 9. SPECTRUM FACTOR WITHIN CURLY BRACES IN EQ. (4.15) ON 
LOG-LOG COORDINATES FOR SINUSOIDAL-BASED TOOTH LOADING 
FUNCTION. 
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FIG. 10. SPECTRUM F.'I\CTOR GlITHIN CURLY BRACES IN EfJ. (4.16) 
ON LOG-LOG COORDINATES FOR POLYNOMIAL-BASED TOOTH 
LOADING FUNCTION FOR r=3. 
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FIG. 11. SPECTRUM FACTOR WITHIN CURLY BRACES IN EQ. (4.16) 
ON LOG-LOG COORDINATES FOR POLYNOMIAL-BASED TOOTH 
LOADING FUNCTION FOR r=7. 
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9= "= 
gtooth mesh 

(4.19) 

where we recall that (L/A) is the transverse contact ratio which is 
generally in the approximate neighborhood of (L/A) =: 1.5 

Examination of Eqs. (4.15b) and (4.16) shows that both equa- 
tions have the same high frequency asymptotic behavior: 

FxbJj (.x1 ;gl 
_ WdA~;~;AR) 1, si$(;-;kl 1, 

\ ) 

= w ASfd’rrAg) 
d r Ag 

(4.20) 

We see that the quantity within the curly braces in Eq, (4.20) is 
independent of r, from which it follows that provided s # 0 the 
high frequency asymptotic behavior of all curves with the same value 
of s in Figs. 9 through 11 should be the same. The figures are in 
agreement with this behavior. Furthermore, from Eqs. (4.10), (4.111, 
and (4.13), we see that 

dw 
S= A = (L-A) dWj -- - 

dx Wd dx 
X=-l contact initiation 

(4.21) 

where the slope of the tooth loading function is evaluated at the 
point of contact initiation. Combining this result with the first 
form of Eq. (4.20) gives for the high-frequency asymptotic behavior 
of’ Fx[Wj (Ix) ;gl: 

Fx[Wj (X) ;gI _ sin(nAg) sin[T(L-A)g] dWj (4.22) 
.rr*g* dx 

contact initiation 

whose envelope is (r2g2)-1(dWJ/dx)contact initiation. - Thus, we 
see that the high frequency content of the Fourier transform of 
the tooth loading function is directly proportional to its slope at 
the point of contact initiation. 

As a consequence of this fact, we have a trade-off in choosing 
the tooth loading functions Wj(x) for high-speed gearing. On the 
one hand, a large value of the slope of Wj(x) at points of contact 
initiation and termination will minimize variations in the tooth 
contact region for loadings other than the design loading. On the 
other hand, such large values of the slope of Wj(x) will also give 
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rise to more energy in the high frequency portion of the spectrum 
Of ‘j(‘), and therefore will be more likely to excite tooth reso- 
nant vibrations. For tooth loading functions with the same slope 
magnitudes at points of contact initiation and termination, 
Eq. (4.22) provides a simple formula for estimating the high fre- 
quency region of the Fourier transform of W,(x) for investigating 
the importance of the resonant response of gear teeth. 
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APPLICATION 

The theoretical results of the preceding sections of the 
report are applied to the NASA Lewis four-square test apparatus 
in this section. 

Profile Modification for Minimum Vibration Excitation 

The initial step in the profile modification design pro- 
cedure is to specify the individual tooth loading function Wj(x) 
illustrated in Fig. 3, where Wj(x) is subject to the constraint 
given by Eq. (4.4). The simplest loading function to satisfy 
Eq. (4.4) is that characterized by the dimensionless function 
fj(x) given either by Eq. (4.12) or Eq. (4.14) for the case where 
s = 1. [For this value of s, Eq. (4.12) and (4.14) both describe 
the dimensionZess linear loading characterization 
Wj(X) = x, - 1 < x < 1.1 For this case, the full dimensional 
loading function Wj(x) becomes the function with linear load 
sharing curves shown in Fig. 12, which is symmetric about the 
pitch point. The abscissa of Fig. 12 represents "roll distance" 
6x = Rb68, where 88 is an increment of gear rotational angle in 
radians and Rb is the base circle radius of the same gear. The 
maximum potential roll distance over which a tooth can be loaded 
can be determined by Eqs. (D8), (Dll), and (D12) of Ref. 4 from 
the addenda radii and pitch radii of the two meshing gears and 
the pressure angle. Both test gears in the NASA Lewis four- 
square apparatus have Ra = 4.7625 cm (1.875 in) and R = 4.445 cm 
(1.750 in) for their addenda radii and pitch radii respectively. 
Their pressure angle is 20°. Utilizing Eqs. (D8), (Dll), and 
(D12) of Ref. 4, we find the maximum potentia2 value of roll 
distance for these test gears to be Lnominal = 1.53530 cm 
(.604450 in) as shown in Fig. 12. However, the tip rounding 
radius on the test gears reduces the actua2 maximum value of roll 
distance to a value of about L = 1.37450 cm (.5411406 in). Fur- 
thermore, it was our desire to allow for at Zeast a 20% increase 
in loading of the test gears beyond the design loading, and to 
allow for tooth spacing errors without encountering tip inter- 
ference. Thus, we have chosen the design vaZue of roll dis- 
tance to be L = 1.22971 cm (.48414 in). This value can be com- 
puted from the values shown in Fig. 12 - i.e., 
1.53530 - (2x.152794) = 1.22971 cm. The values of roll distance 
increment during load sharing of . 29235 cm are computed from the 
design vaZue of L = 1.22971 cm and the base pitch A. The base 
pitch is computed from the pitch radius R = 4.445 cm, number of 
teeth N = 28, and pressure angle $I = 20° by the relation 
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FIG. 12. TOOTH LOADING FUNCTION FOR COMPUTATION OF TOOTH 
STIFFNESS [LENGTH DIMENSIONS ARE IN CM (IN).]. 
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A - 27~13 - - cos$ = N .93730 cm (.36902 in). (5.1) 

The roll distance increment during load sharing is L-A (see 
Fig. 3.1, which in the present case is 

L-A = 1.22971 - .93730 = .29241 cm (.1151 in) (5.2) 

as is shown in Fig. 12. The tooth loading function shown in Fig. 12 
was constructed in the above manner. These values result in a 
design contact ratio of (L/A) = (1.22971/.93730) = 1.312, which 
is a completely acceptable value. 

The tooth loading diagram shown in Fig. 12 was transmitted to 
NASA Lewis and used there to compute the tooth deformations re- 
quired to carry out the profile modification designs. See Fig. 4 
of Ref. 18, where the roll angle increments 60 in degrees are 
obtained from the roll distances 6x shown in Fig. 12 by the relation 

"deg 
2%. Fjx 

= 2nRb 3 (5.3) 

where, for the test gears in question, the base circle radius is 
Rb = 4.17693 cm (1.64446 in). 

Reference 18 computes the deformation under the loaded tooth, but 
not the component of deformation under neighboring teeth due to 
that loading. Thus, to illustrate the profile design method de- 
scribed in the preceding section, we shall assume here that when 
only one tooth is loaded, the deformations of all neighboring teeth 
are zero. That is, for the present approximate profile modifica- 
tion design, we shall assume that c jjr(x) = 0 when j f j', where 
the c..,(x) are the influence functions in the profile design 
formuiis given by Eqs. (4.6a) and (4.6b). Employing this assump- 
tion, and recognizing that, in the present application, both mesh- 
ing test gears are identical, we see that both design equations 
(4.6a) and (4.6b) are reduced in this (approximate) application to 

mj(x) = -c jj(x) wj(x) , (5.4) 

which is the negative of the tooth deformation due to application 
of the loading W.(x) illustrated in Fig. 12. However, according 
to our sign conv!Jntion, a negative value of mj(x) is equivalent to 
an addition of material to the involute design. Thus, the approxi- 
mate result of Eq. (5.4) states that an amount of material depth 
equal to the tooth deformation under the loading Wj(x) must be 
added to the perfect involute tooth surface to minimize the vibra- 
tion excitation. This depth is measured in a direction defined by 
the intersection of the base plane and a plane normal to the gear 
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axes. This is the direction normal to the perfect involute 
surfaces before modification. 

The tooth deflections caused by the point loading function 
shown in Fig. 12 have been tabulated in Table III of Ref. 18, 
which has been reproduced as Table 1 of this report. ‘Thus, the 
deflections listed in Table 1 are the depths of addition of ma- 
terial to the test gear pure involute profiles as described by 
the approximate result of Eq. (5.4). 

Normally, profile modifications are thought of in terms of 
remova of materia2 from perfect involute profiles. The amounts 
of material "removal" equivalent to the material "additions" 
listed as "Deflections" in Table 1 can be obtained by subtracting 
the deflection entries in Table 1 from the maximum deflection 
entry. The column entitled "Profile relief" (in) in Table 2 was 
computed in this manner by subtracting the corresponding "Deflec- 
tions" (in) in Table 1 from 6.1733 E-4. The values of profile 
relief in mm were then computed by multiplying the (in) entries 
by 25.4. 

Examination of the profile relief values given in Table 2 
shows maximum values of profile relief at the two ends of the 
contact region (near tooth tip and root), with relief values 
monotonically decreasing to a value of zero in the center portion 
of the tooth. This general behavior is consistent with current 
industry practice, and is a consequence of the monotonically in- 
creasing and decreasing behavior of the tooth loading function 
shown in Fig. 12. Any of the sinusoidal or polynomial-based load- 
ing functions discussed in the preceding section would yield pro- 
file relief functions with the same general behavior as that 
tabulated in Table 2. 

The teeth of both of the nominally identical test gears must 
be modified by the amounts indicated in Table 2 to compensate for 
their deflections under loading. The smaller values of roll angle 
designate the tooth regions nearer the tooth root, and the larger 
values of roll angle designate the tooth regions nearer the tip. 
The profile modification for approximate minimization of the 
vibratory excitation has the same shape as the tooth deflection 
function shown in Fig. 13. The modifications of the root and 
tip regions beyond the design zone of contact are to be obtained 
by linear extrapoZation of the profile relief vaZues shown in 
Ta,bLe 2. 

P 

This procedure is equivaZent to a Linear extrapolation 
0 the two ends of the curve shown in Fig. 13. This increased 

elief in the tip and root regions will permit the application 
of mesh loadings at least 20% in excess of the 1615 N (363 lb) 
design loading without tip interference - including an allowance 
for modest tooth spacing errors. 
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Table 1. 

Roll angle 

rad 

0.2208 12.65 -5.979 -0.2354 93.05 20.92 5.7412 E-4 
.2271 13.01 -5.718 -.2251 238.4 53.59 1.5026 E-3 
.2361 13.53 -5.342 -.2103 446.1 100.3 2.8184 ~-3 
.2474 14.17 -4.867 -.1916 706.8 158.9 4.5072 E-3 
.2609 14.95 -4.308 -. 1696 1018 228.9 6.5641 E-3 
.276D 15.81 -3.673 -.1446 1366 307.2 a.9797 E-3 
-2922 16.74 -2.997 -.I180 1615 363.0 1.0875 E-2 
.3084 17.67 -2.322 -.0914 1615 363.0 1 1200 E-2 
.323a la.55 -1.676 -.0660 1615 363.0 1.1554 E-2 
.3386 19.40 -1.057 -.0416 1615 363.0 1.1930 E-2 
.3529 20.22 -.462 -.0182 1615 363.0 1.2345 E-2 
.3640 20.86 0 0 1615 363.0 1.2600 E-2 
-3747 21.47 .447 .0176 1615 363.0 1.3035 E-2 
-3876 22.21 .986 .0388 1615 363.0 1.3501 E-2 
.4000 22.92 1.506 .0593 1615 363.0 1.4004 E-2 
.4121 23.61 2.012 .0792 1615 363.0 1.4537 E-2 
.4237 24.28 2.497 .0983 1615 363.0 1.5090 E-2 
.435!J 24.92 2.969 .1169 1615 363.0 1.5680 E-2 
.445a 25.54 3.419 .1346 1508 339.0 1.5132 E-2 
.4557 26.11 3.830 .1508 1280 287.7 1.3438 E-2 
.4645 26.61 4.199 .1653 1077 272.2 1.1713 E-2 
.4723 27.06 4.526 .I782 896.7 201.6 1.0058 E-2 
.4793 27.46 4.818 -1897 735.3 165.3 8.5060 E-3 
.4855 27.82 5.077 .1999 592.5 133.2 7.0455 E-3 
.4909 28.13 5.304 .2088 467.5 105.1 5.6g37 E-3 
.4956 28.40 5.502 .2166 359.3 80.77 4.4691 E-3 
.4997 28.63 5.669 .2232 265.0 59.57 3.3726 E-3 
.5031 28.83 5.812 .22aa 186.2 41 .a7 2.4210 E-3 
.5059 28.95 5.928 .2334 121.7 27.35 1.6135 E-3 
.5080 29.11 6.017 .2369 73.21 16.46 9.6342 E-4 

L 

deg 

Tabulation of Single Tooth Loadings and Deflections 
as a Function of Roll Angle. Loadings were Obtained 
from Fig. 12. [From Ref. 18.1 

Distance from pitch 
point along line of 

action T 
ml in. 

N 

Load 

lb 

T- Deflection 

mn in. 

pm; E-2 

1:1096 EI4 
1.7745 E-4 
2.5843 E-4 
3.5353 E-4 
4.2813 E-4 
4.4095 E-4 
4.5488 E-4 
4.6970 E-4 
4.8603 E-4 
4.9605 E-4 
5.1320 E-4 
5.3155 E-4 
5.5135 E-4 
5.7233 E-4 
5.9408 E-4 
6.1733 E-4 
5.9573 E-4 
5.2905 E-4 
4.6113 E-4 
3.9598 E-4 
3.3486 E-4 
2.7738 E-4 
2.2416 E-4 
1.7595 E-4 
1.3278 E-4 
9.5315 E-5 
6.3525 E-5 
3.7930 E-5 
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Table 2. Tabulation of Single Tooth Loadings and Profile 
Relief as a Function of Roll Angle for Approximate 
Minimization of Vibration Excitation. 

Roll angle 

rad deg 

Distance from pitch 
point along line of 

action 

Load 1 Profile relief 

N lb mll in. 

ml in. 

0.2208 12.65 -5.979 -0.2354 93.05 20.92 1.5106 E-2 
.2271 13.01 

5.9473 E-4 
-5.718 -.2251 238.4 53.59 1.4178 E-2 5.5817 E-4 

.2361 13.53 -5.342 -. 2103 446.1 100.3 1.2862 E-2 5.0637 E-4 

.2474 14.17 -4.867 -. 1916 706.8 158.9 1.1173 E-2 4.3988 E-4 

.2609 14.95 -4.308 -. 1696 1018 228.9 9.1161 E-3 3.5890 E-4 

.2760 15.81 -3.673 -.1446 1366 307.2 6.7005 E-3 2.6380 E-4 

.2922 16.74 -2.997 -.1180 1615 363.0 4.8057 E-3 1.8920 E-4 

.3084 17.67 -2.322 -.0914 1615 363.0 4.4801 E-3 1.7638 E-4 

.3238 18.55 -1.676 -.0660 1615 363.0 4.1262 E-3 1.6245 E-4 
-3386 19.40 -1.057 -.0416 1615 363.0 3.7498 E-3 1.4763 E-4 
.3529 20.22 -.462 -.0182 1615 363.0 3.3350 E-3 1.3130 E-4 
.3640 20.86 0 0 1615 363.0 3.0805 E-3 1.2128 E-4 
.3747 21.47 .447 .0176 1615 363.0 2.6449 E-3 1.0413 E-4 
-3876 22.21 .986 .0388 1615 363.0 
.4000 22.92 

2.1788 E-3 .8578 E-4 
1.506 .0593 1615 363.0 

-4121 23.61 
1.6759 E-3 .6598 E-4 

2.012 .0792 1615 363.0 
.4237 

1.1430 E-3 .4500 E-4 
24.28 2.497 .0983 1615 363.0 .5906 E-3 .2325 E-4 

.4350 24.92 2.969 .1169 1615 363.0 0 0 

.4458 25.54 3.419 .1346 1508 339.0 .5486 E-3 .2160 E-4 

.4557 26.11 3.830 .1508 1280 287.7 2.2423 E-3 -8828 E-4 

.4645 26.61 4.199 .1653 1077 272.2 
-4723 27.06 

3.9675 E-3 1.5620 E-4 
4.526 .1782 896.7 201.6 

.4793 27.46 
5.6223 E-3 2.2135 E-4 

4.818 .1897 735.3 165.3 
.4855 27.82 5.077 

7.1742 E-3 2.8245 E-4 
.1999 592.5 133.2 

.4909 28.13 
8.6347 E-3 3.3995 E-4 

5.304 .2088 467.5 105.1 
-4956 28.40 5.502 

9.9865 E-3 3.9317 E-4 
.2166 359.3 80.77 

.4997 28.63 5.669 
1.1211 E-2 4.4138 E-4 

.2232 265.0 59.57 
.5031 28.83 

1.2308 E-2 4.8455 E-4 
5.812 .2288 186.2 41.87 

.5059 28.99 
1.3259 E-2 5.2201 E-4 

5.928 .2334 121.7 27.35 
.506u 29.11 

1.4067 E-2 5.5380 E-4 
6.017 .2369 73.21 16.46 1.4717 E-2 5.7940 E-4 

1 
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Transmission Error Dynamic Increment Functions 

In the section devoted to the response, we found that the 
dynamic contributions of the static transmission error to the 
mesh and bearing support force spectrum, and to the force on a 
single tooth, all are governed by the functions Q,,(w) and 
&I II(w), where, in general, Qij(w) represents the dynamic con- 
tribution to the transmission error complex harmonic amplitude 
at mesh i from a unit-amplitude harmonic component of the static 
transmission error at mesh j. Here, either subscript i or j can 
represent either mesh I or mesh II, where in the foregoing, we 
have been concerned mainly with the case i = I. See, for example, 
:;53$3.7), (z-8), and (3.11), and Eqs. (3.31), (3.33), and 

. . The transfer functions" Qij(w) are properties only of 
the gearing structure - we have designated them "transmission 
error dynamic increment functions" since each function Q 
tends to zero as w + 0. 

ij (w> 

For the four-square test apparatus under study, expressions 
for Q,,(w) in terms of basic system parameters are given by 
Eqs. (2.5l), (2.55), (2.57), and (2.58), and expressions for 
QI II(W) are given by Eqs. (2.52), (2.56), (2.57), and (2.59). 
Asymptotic low-frequency approximations for &II(w) and &I II(w) 
are given by Eqs. (2.62) and (2.65) respectively, and asymptotic 
high-frequency approximations for &II(w) and &I II(w) are given 
by Eqs. (2.64) and (2.66) respectively. Functions &II(w) and 
QI II(W) are, in general, complex. 

The basic system parameters required to evaluate the above 
expressions have been carefully evaluated and are: 

I = .004112 N-m-set' (.0364 lb-in-sec2) 1 
I = .0008010 N-m-sec2 (.00709 lb-in-sec2) 

2 

I = .002994 N-m-sec2 (.0265 lb-in-sec2) 
3 

R=R = b .0417693 m (1.64446 in). 

% = 1.26312 x iom8 m/N (2.21195 x 10m6 in/lb) 

CII = 2.10520 x 10-~ m/N (3.68659 x 10D7 in/lb). (5.5) 

Values Qf the damping constants cl, c2, c3, and ca have been 
chosen by assuming* the> the damping coefficients of all four 

*Private communication with Dr. John J. Coy. 
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bearings in the test rig are the same, where the mesh damping 
is included in the b earing damping coefficients. The bearing 
damping is then spec ified by the fraction of critical damping 
5 

1 
in the test gear-shaft-slave gear degree-of-freedom on the 

side of the unit opposite to the loading-vane; the loading-vane 
damping coefficient ca is specified by assuming a value for the 
fraction of critical damping 5 
freedom on the loading-vane siie 

in the slave gear degree-of- 
of the unit, which includes the 

slave gear bearing damping and the damping associated with rela- 
tive motion in the loading-vane. Expressions for cl and G3 are 
readily determined from Eqs. (2.19) and (2.21) as 

C 
Cl = 1 5 

c +ca 
= 3 

2/i77 ' 3 2g' 
(5.6a,b) 

where 

k 
1 

= R2[(cI)-' + (c,,)-'] , k = R2(cII)-l , (5.7a,b) 
3 

from which we obtain 

C 
1 

= 2X1 q ,\ c = (26/77) - c a 3 ’ 

and 

C =c = 1, . 
2 3 2 

(5.8a,b) 

(5.9) 

This last expression is a consequence of the assumption of equal 
bearing damping coefficients and the fact that c1 represents the 
damping of two bearings, whereas c and c represent the damping 
of only a single bearing each. Asguming*3 values of <I = 0.1 and 

53 = 0.5 yields, from Eqs. (5.5) through (5.9), the following 
damping constants: 

C 
1 

= 12.6114 N-m-set (111.626 lb-in-set) 

C = c 
2 3 

= 6.30571 N-m-set (55.8130 lb-in-set) 

C a = 43.5062 N-m-set (385.081 lb-in-set). (5.10) 

*Private communication with Dr. John J. Coy. 
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The above cited expressions for the two transmission error 
dynamic increment functions &II(w) and &I II(w) and their low- 
and high-frequency asymptotic approximations have been evaluated 
using the above cited numerical constants, and are plotted in 
Figs. 14 through 17. Figure 14 displays the magnitude of Q,,(w) 
and the magnitude of the low- and high-frequency asymptotic ap- 
proximations of &II (w), Fig. 15 displays these same metrics for 
the magnitude of QI II (w), Fig. 16 displays the real and imagi- 
nary parts of Q,,(w) and its asymptotic approximations, and 
Fig. 17 displays the comparable quantities for &I II(w). 

The test apparatus shown in Fig. 1 has three degrees of 
freedom; however, one of these must be considered to be degenerate 
due to the absence of an elastic restraint on steady rotation of 
the system. Consequently, we would expert to see two resonant 
frequencies for such a system. Figures 14 and 15 show one reso- 
nant frequency in the neighborhood of about 3500 Hz, but no 
second resonance is apparent in these figures. This second reso- 
nance does not show up because of the relatively large value 
(<3 

= 0.5) of damping assumed for relative motion in the loading- 
vane. Choice of a smaller value for 53 shows a second resonance 
in the approximate neighborhood of 2000 Hz. 

The nominal running speed of the test apparatus is 10,000 
rpm. Thus, the tooth meshing frequency of the 28 tooth test gears 
is 

fI = 10,000 -.60- x 28 = 4666.67 HZ, (5.11) 

and the tooth meshing frequency of the 35 tooth slave gears is 
10,000 

fII = --Ri--- x 35 = 5833.33 Hz . (5.12) 

Examination of Fig. 14 shows that f is beyond both system resonant 
frequencies, and is in the region w ere ii the high-frequency asymp- 
totic formula for &II (a> given by Eq. (2.64) provides quite 
accurate results. Examination of Fig. 15 shows that fII also is 
beyond both resonant frequencies, but the high-frequency asymp- 
totic formula, Eq. (2.66), provides only marginal accuracy for 
QI I+) in the neighborhood of fII = 5833 Hz. 

Further examination of Fig. 14 shows that for fI = 4667 Hz 
and all of its multiples, I&II(o)/ is approximately unity indicat- 
ing that dynamic effects are playing an important part at all of 
the test gear tooth-meshing harmonic frequencies. On the other 
hand, examination of Fig. 15 shows that for fII = 5833 Hz and 
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FIG. 14. MAGNITUDE OF TRANSMISSION ERROR "AUTO" DYNAMIC 
INCREMENT FUNCTION Q,,(w) AND ITS ASYMPTOTIC 
FORMS. 
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FIG. 15. MAGNITUDE OF TRANSMISSION ERROR "CROSS" DYNAMIC 
INCREMENT FUNCTION Q, II(w) AND ITS ASYMPTOTIC 
FORMS. 
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FIG. 16. REAL AND IMAGINARY PARTS OF TRANSMISSION ERROR 
"AUTO" DYNAMIC INCREMENT FUNCTION Q,,(w) AND 
ITS ASYMPTOTIC FORMS. 
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beyond, 1 QI II (w)lis not very different from zero, indicating 
that at the 10,000 rpm testing speed, the tooth-meshing har- 
monics of the static transmission error of the slave gears have 
little effect on the dynamic transmission error of the test 
gears. However, if the test apparatus rpm were reduced to 
about 6000 rpm, Fig. 15 shows that a very substantial magnifi- 
cation of the sZave gear static transmission error tooth meshing 
fundamental would be added to the test gear dynamic transmission 
error. See Eq. (3.17). This magnification factor, which is 
about 5.6, provides dramatic illustration of the very substantia2 
errors that can be introduced by the common practice of modeZing 
gearing systems with more than one mesh by simple uncoupled 
singZe mesh systems. 

Mesh and Bearing-Support Force Spectrum 

In the remaining portion of this report, we illustrate the 
theory developed in the preceding portions with computations 
made for two sets of test gears: one set possesses perfect in- 
volute profiles except for linear tip relief that starts at the 
highest point of single tooth contact and extends to the tip of 
the tooth; the second set possesses the approximately optimum 
profile modification defined by Eq. (5.4), where the tooth loading 
function Wj(x) used is illustrated in Fig. 12. Thus, the teeth of 
this second gearsethave additions of material to the perfect 
involute profiles, where the added depths are equal to the values 
of the deflections given in Table 1. Linear interpolation was 
used to define the values of these profile modifications between 
the values given in Table 1 - except for the points on either 
side of the slope discontinuities shown in Fig. 13. Additional 
points were added at the locations of these slope discontinuities 
that were computed by linear extrapolation of pairs of points 
on either side of the discontinuities shown in Fig. 13. These 
two additional points are: 

Roll angle "Deflection" 

rad deg mm in 

.2872 16.46 1.0772 E-2 4.2'409 E-4 

.4408 25.26 1.5984 E-2 6.2929 E-4. 

The above values can be thought of as added entries to Table 1. 

The amount of tip relief used in the linear tip relief test 
gear calculations was . 01524 mm (.0006 in) which was specified 
at a radial position of the addendum radius minus the tip rounding 
radius of .381 mm (.015 in). 
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The first step indetermining the mesh and bearing-support 
force spectrum, Eq. (3.11), is computation of the sets of Fourier 
series coefficients a mn1 and a mnI1' n = +-1,+-2,.*. of the static 
transmission errors of the test gears (mesh I) and those of the 
slave gears (mesh II) for use in Eqs. (3.7) and (3.8). The tooth 
profiles of the slave gears are unmodified involute profiles. The 
sets of static transmission error Fourier series coefficients, 
Eq. (l-5), were computed using the general methods outlined in 
Sec. 1 of this report. Each set of Fourier series coefficients was 
then multiplied by (c >" times the appropriate dynamic increment 
function as indicated'by Eqs. (3.7) and (3.8) to yield the test 
gear mesh and bearing-support force Fourier series coefficients 
arising from the test gear and slave gear static transmission error 
excitations. The dynamic increment functions used were those 
illustrated in Figs. 14 through 17. The test gear mesh and bearing- 
support force Fourier series coefficients awII(n) and awI II(n) 
that arise from the static transmission errors of the test and 
slave gear meshes respectively were then combined as in Eq. (3.11) 
with the d-c torque ~~ and base circle radius R of the test gears 
to yield the test gear mesh and bearing-support force (line) spec- 
trum. Frequencies fI and fII are the tooth meshing frequencies 
of the test and slave gears respectively. 

Figure 18 shows the (one-sided) line spectrum of the dynamic 
loads experienced by the test gear mesh and bearings that arises 
from the test gear static transmission error, and that is ex- 
pressed by the first Line of Eq. (3.11). The spectrum shown in 
Fig. 18 is for the above-mentioned test gear set with linear tip 
relief. Figure 19 shows the comparable spectrum for the test gear 
set with the approximately optimum profile modification shown in 
Fig. 13. The line spacing in each of Figs. 18 and 19 is the 
frequency spacing of the test gear tooth meshing harmonics, which 
is 4666.67 Hz according to Eq. (5.11). Each plot shows a d-c 
component on the ordinate with strength marked by an x and 64 
additional lines, which was the total number of harmonics computed 
by the computer program. The abscissa is measured in Hertz and 
the (logarithmic) ordinate is measured in (lb)2. 

The value of the d-c component indicated by the x is the same 
in each spectrum shown in Figs. 18 and lg. This value is 
ha/R) 2 = (363)2 = 131,769 (lb>2. However, careful inspection of 
the remaining lines shows that those of Fig. 18 are typically 
about lo3 stronger than those of Fig. 19 corresponding to (linear) 
forces in Fig. 19 of about J- or 3% to 4% of those in Fig. 18. 
In fact, since the tooth optimum profile modification is supposed 
to exactly compensate for the static transmission error, the 
strengths of all lines in Fig. 19 except the d-c component should 
theoretically be zero. This did not happen exactly because 
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we modeled the single tooth compliance by a least-squares cubic 
polynomial! fit to the compliance values computed from the data 
shown in Table 1, whereas we took the profile modifications 
directly from the numerical values shown in Table 2 - giving rise to 
a small discrepancy between the compliance values and deflection 
values caused by the small "errors" in the cubic polynomial fit. 
However, such force spectrum reductions shown by comparison of 
Figs. 19 and 18 might be typical of what we could hope to achieve 
with the optimum design procedure indicated by Eqs. (4.6a) and 
(4.6b). We would not expect to do this well in practice with the 
approximate optimum design given by Eq. (5.4), which neglects de- 
flections ofall teeth except the loaded tooth. 

Figures 20 and 21 are plots of the contributions of the second 
line in Eq. (3.11) to the mesh and bearing support force spectra. 
Figure 20 provides that contribution in the case of the test gears 
with linear tip relief, and Fig. 21 provides the comparable con- 
tribution in the case of the test gears with the approximately 
optimum profile modifications prescribed by Table 2. The line spac- 
ing in each of Figs. 20 and 21 is the frequency spacing of the slave 
gear tooth meshing harmonics which is 5833.33 Hz, according to 
Eq. (5.12). The abscissa of Figs. 20 and 21 is measured in units 
of Hertz and the (logarithmic) ordinate is measured in units of 
(lb)2. 

The line spectra shown in Figs. 20 and 21 possess no d-c com- 
ponent. This lack of a d-c component is a result of the fact that 
&I II(w) = 0 at w = 0 as can be seen from Fig. 15 - which results 
in aWI II(O) = 0 according to Eq. (3.8). 

According to Eqs. (3.8) and (3.111, the strengths of the lines 
in Figs. 20 and 21 should depend on the time-average value of the 
compliance of mesh I, CI, the transmission error "cross" dynamic 
increment function &I II(w) shown in Fig. 15, and the Fourier series 
coefficients c1 

""&A 
of the static transmission error of (slave) gear 

mesh II. Since e slave gears had no profile modifications, 
their static transmission error arises only from their elastic de- 
formations. The Fourier series coefficients of the elastic de- 
formation component of the static transmission error is given by 
Eq. (1.8) - they are determined essentially by the Fourier series 
coefficients a(l,K)n, n = 0,+1,+2,** * of the instantaneous recipro- 
cal of the total stiffness of mesh II. For the slave gears of 
mesh II, these Fourier series coefficients were taken to be one- 
sixth of those for the test gears of mesh I (because the width of 
the slave gears is six times that of the test gears). Since the 
roll distance L of the test gears with linear tip relief differs 
somewhat from the design roll distance L for the test gears with 
(approximately) optimum profile modifications, the temporal behavior 
of the test gear instantaneous total mesh stiffness differs slightly 
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for these two cases - hence, our predictions of the slave gear 
contributions to the test gear mesh and bearing-support force 
spectra shown in Figs. 20 and 21 also differ slightly for these 
two cases. 

From Eqs. (3.71, (3.8), and (3.11), we see that the trans- 
mission error "auto" dynamic increment function &II(w) of Fig. 14 
is the structural transfer function that governs the force spectrum 
component given by the first line in Eq. (3.11), whereas the trans- 
mission error "cross" dynamic increment function &I II(W) of Fig.15 
is the structural transfer function that governs the force spectrum 
component given by the second line in Eq. (3.11). In the frequency 
range beyond 4666 Hz where all test gear tooth-meshing harmonics 
fall, we see from Fig. 14 that I&II(w)1 z 1, whereas in the fre- 
quency range beyond 5833 Hz where all slave gear tooth meshing 
harmonics fall, we see from Fig. 15 that ]&I II(w)] << 1. This 
difference in the structural transfer functions is the main reason 
why the slave gear contribution of Fig. 20 to the test gear force 
spectrum is much less than the test gear "auto" contribution shown 
in Fig. 18 for the linear tip relief case. However, in the case 
of the approximately optimum profile modification, the first two 
slave gear tooth meshing harmonic contributions shown in Fig. 21 
are stronger than those from the test gear shown in Fig. 19 be- 
cause of the reduction of the test gear contributions arising from 
the approximately optimum profile modification. 

Dynamic Force on a Single Tooth 

The dynamic increment 6W ij(t) of the force history on a single 
tooth given by Eq. (3.31) can be decomposed into two components 

sw,tj(t) = dWIj*(t) + GWijII(t) , (5.13) 

where we have defined 

‘W:jI(t) ~ K~j(t) B5~II(t) (5.14) 

and 
t 

"WIjII(t) = * Kgj(t) 65LI II(t) 3 (5.15) 

where the notation on the right-hand sides of Eqs. (5.14) and (5.15) 
is the same as that onthe right-hand side of Eq. (3.31). That is, 
K~j (t> is the instantaneous stiffness of a typical pair of test 
gear teeth, and "<LII(t) and 6~:~ II (t) are the dynamic increments 
of the transmission error of the test gear mesh arising from the 
test gears and slave gears as given by Eqs. (3.33) and (3.34) re- 
spectively. E'rom Eqs. (3.29), (3.31), and (5.13) through (5.15), 
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we can represent the dynamic force W zj(t) on a single tooth of 
the test gear mesh as 

W~j(t) = ~rja(t) + sWtrjI(t)] + GW~jII(t) ' (5.16) 

The first two terms within the brackets in the right-hand side of 
Eq. (5.16) constitute tht total contribution to the single tooth 
force W,tj(t) arising from'the static transmission error excitation 
by the test gear mesh, whereas the third term 6Wt IjII(t) in the 
right-hand side of Eq. (5.16) is the contribution to Wij(t) from 
the static transmission error excitation by the slave gear mesh. 

Figure 22 shows the predicted total force contribution 

CwTj 0 (t)+swTjI(t)l on a typical tooth of the driving test gear 
arising from the static transmission error excitation by the test 
gear mesh. The rotational speed of the NASA Lewis four-square 
test apparatus used in the computation was 10,000 rpm. The test 
gear mesh carries a mean loading -ca/R of 1615 N (363 lbs). The 
force history shown in Fig. 22 is for the test gears with linear 
tip relief of . 01524 mm (.0006 in) as described earlier in this 
report. 

The ordinate of Fig. 22 is force in units of pounds, and the 
abscissa is time in seconds. The time origin t = 0 is located at 
the pitch point which corresponds to the center position of the 
time axis. Contact initiation occurs at the base of the tooth at 
t = -1.57x10+ set and terminates at the tip at t = 1.57 x 10-4sec. 

At the instant of contact initiation, the tooth abruptly picks 
up a loading of 98.5 lb as is indicated in Fig. 22. This abrupt 
loading of the base occurs because the tip of the tooth of the 
matinggearhas too ZittZe modification to allow a smooth onset of 
loading of the tooth base at contact initiation. The loading on 
the tooth thereupon increases in an approximately linear fashion 
from the instant of contact initiation through the interval of 
two-tooth contact until the instant where the discontinuity in 
slope occurs and where the rate of loading increase abruptly di- 
minishes. Beyond this instant, where the force on the tooth is 
approximately a constant value of 338 lb, is the region of single 
tooth pair contact. The loading on the tooth thereupon decreases 
in an approximately linear fashion again until contact terminates 
at the tip at t = 1.57 x low4 sec. At this instant, the loading on 
the tooth drops abruptly from 98.5 lb to zero as contact is lost. 

Figure 22 indicates that the maximum loading carried by the 
tooth is 338 lb. This value is 25 lb less than the static loading 
of 363 lb carried by the tooth within the region of single tooth 
pair contact under static loading conditions. The reason for this 
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25 lb maximum loading decrease is that at the instant of maximum 
loading of 338 lb shown in Fig. 22, the dynamic loading increment 
&WijI(t) of Eq. (5.14) is -25 lb. This loading decrease arises 
from the dynamic transmission error increment &<LII(t) in Eq. 
(5.14) (which is negative in this case). 

Physically, this decrease of 25 lb of maximum tooth loading 
arises from the undermodification of the tooth tips that results 
in the abrupt loading increments of 98.5 lb at contact initiation 
and termination as shown in Fig. 22. This "extra" loading carried 
in the two tooth-pair contact regions results in a reduced tooth 
loading within the region of single tooth-pair contact, which occurs 
because at a test speed of 10,000 rpm the inertia associated with 
the test gear masses prevents the teeth from picking up their full 
static loading of 363 lb within the single tooth-pair contact 
interval. 

Figure 23 shows the force history [Wiio(t)+GWijI(t)] on a 
typical tooth of the driving test gear thalf; is comparable to Fig. 
22 - except that the force history shown in Fig. 23 was computed 
for test gears with the profile relief values shown in Table 2 
(which was displayed earlier in this section). Force values 

['Zj 0 
(t)+sWzjI(t)] shown in Fig. 23 arise from the static trans- 

mission error excitation by the test gear mesh only, as can be 
seen from Eqs. (3.29), (3.301, (3.331, (5.131, and (5.14). For 
the case shown in Fig. 23, the rotational speed of the four-square 
test apparatus was 10,000 rpm and the mean loading T~/R carried by 
the test gears was 1615 N (363 lb), which are the same values as 
for the case shown in Fig. 22. 

Contact initiation occurs at the base of the tooth at a value 
of t = -1.41 x 1o-4 set instead of t = -1.57 x 10e4 set as in 
Fig. 22. This reduction in ItI at contact initiation (and contact 
termination) shown in Fig. 23 occurs because of the slightly 
smaller design value of roll distance of L = 1.22971 cm (.484l4 in} 
of the test gears of Fig. 23 [in comparison with 
L = 1.37450 cm (.5411406 in) for the test gears of Fig. 221. In 
contrast to the case shown in Fig. 22, the tooth loading at the 
instant of contact initiation of t = -1.41 x 10m4 set and contact 
termination t = 1.41 x 10D4 set is zero for the case shown in 
Fig. 23. The initial value of 17.6 lb shown in Fig. 23 occurs at 
a value of Jt] somewhat smaller than It] = 1.41 x 10B4 sec. The 
loading history between ItI = 1.41 x 10m4 set and the first value 
of 17.6 lb shown in Fig. 23 is a linear extrapolation of the his- 
tory shown in Fig. 23. This small region is missing from the fig- 
ure because of an artifact of the computer plot routine used to 
plot Fig. 23. 

85 

-- 



3.66E+02 

2.96E+02 

2.27E+02 
P 
ui- 

iz 
0 
L l.S7E+02 

6.73E+01 

1.76E+01 

FIG. 23. PREDICTED FORCE HISTORY ON A TYPICAL DRIVING TEST 
GEAR TOOTH WITH "OPTIMUM" PROFILE RELIEF. ROTATIONAL 
SPEED IS 10,000 RPM. MESH CARRIES A NOMINAL LOADING 
OF 1615N (363 LB). PROFILE RELIEF VALUES ARE GIVEN 
IN TABLE 2. FIGURE EXCLUDES EFFECTS OF DYNAMIC 
EXCITATION FROM SLAVE GEARS. 
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For the case shown in Fig. 23, the single tooth loading pro- 
gresses linearly from zero at t = -1.41 X low4 set to a value of 
about 363 lb at the instant where the region of single tooth pair 
contact begins. The loading during the region of single tooth 
pair contact is almost a constant value growing from about 363 lb 
to 366 lb and back to 363 lb at the end of the region of single 
tooth pair contact. During the subsequent region of two tooth pair 
contact, the loading decreases linearly from 363 lb to zero where 
contact terminates at the tip. The fluctuation of about 3 lb 
within the region of single tooth pair contact occurs because the 
cubic polynomial representation of single tooth compliance that we 
have used in the computation does not agree ezactZy with the stiff- 
ness values computed from the deflections shown in Table 1 - which 
were used to compute the profile relief values shown in Table 2 
(as noted earlier). 

Exact implementation of the optimum design procedure results 
in zero static transmissitin error <,I (t) for the optimally de- 
signed teeth. Thus, for such idealized cases, all Fourier series 
coefficients cmnI of the static transmission error are zero; hence, 
the dynamic increment 6<iII (t) also is identically zero for these 
cases, as we may see from Eq. (3.33). It then follows from Eq. 
(5.14) that the dynamic loading increment sWijI(t) also is iden- 
tically zero in these idealized cases so that, for a perfectly de- 
signed profile modification, Fig. 23 should be a plot of Wljo(t) 
which is the loading history experienced by a typical tooth under 
quasi-static running conditions when inertial effects are negligi- 
ble. This loading history is the prescribed single-tooth loading 
function used in the optimal design process - which, for the pres- 
ent case, is shown in Fig. 12. Thus, except for the scaling of 
the independent variable from roll distance to time, the loading 
functions in Figs. 12 and 23 should be identical. Examination of 
the two figures shows that they are very nearly identical except 
for the approximately 3 lb fluctuation in Fig. 23 within the 
region of single tooth pair contact that arises from the "error" 
in the cubic polynomial representation of the single tooth com- 
pliance data computed from Table 1. 

Comparison of the tooth loading histories shown in Figs. 22 
and 23 shows that the maximum value of single tooth loading for the 
tooth designed for minimum vibration excitation is some 28 lbs 
larger than the maximum single tooth loading for the teeth de- 
signed with linear tip relief (with somewhat undercorrected tips). 
The reason for this result was implied earlier - namely, the abrupt 
(step) loading at contact initiation (and termination) of 98.5 lb 
in the linear tip relief case (that resulted from "undercorrection" 
of the tips) permits the region of two-tooth pair contact to effec- 
tively carry some of the loading that would normally be carried 
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within the single tooth-pair contact region at lower rotational 
speeds. This reduction in peak'single tooth loading of 28 lbs 
is a consequence of the rotary inertias associated with the test 
gears, and would not be observed at substantially lower rotational 
speeds. Furthermore, excitation of other parts of a gearing system 
arising from such undercorrected profiZes couZd-and often will - 
resuZt in Loading increases of such other parts of the system as 
we shaZZ next show. 

In order to obtain the total force W:.(t) on a typical test 
gear tooth, the dynamic force increment 6W 1 

IjII(t) must be added 
to the quantity [W~ja(t)+GW~jI(t)] plotted in Figs. 22 and 23. 
This fact can be seen from Eq. (5.16), where 6WljII(t) represents 
the dynamic force increment on a typical tooth j in the test gear 
mesh (I) from the static transmission error excitation arising from 
the slave gear mesh (II). The dynamic force increments 6Wt IjII(t) 
computed for the case of linear tip relief, and then for the case 
of the profile relief values of Table 2, are shown in Figs. 24 and 
25 respectively, These two figures differ for the same reason that 
the spectra shown in Figs, 20 and 21 differ. That is, in each com- 
putation of 6W' IjII(t)y we require the dynamic transmission error 
increment &<:I II (t) according to Eq. (5.15), which in turn is de- 
termined from the Fourier series coefficients cmnII of the static 
transmission error of the slave gears as is indicated by Eq. (3.34). 
These Fourier series coefficients amnII are determined essentially 
by the Fourier series coefficients a(l,K)n of the instantaneous 
reciprocal of the total mesh stiffness of the slave gear mesh, 
which were taken to be one-sixth of those for the test gear as 
indicated earlier. However, the roll distance L over which tooth 
contact takes place differs for the linear tip relief case in com- 
parison with the profile relief case tabulated in Table 2; hence, 
the temporal behavior of the instantaneous total mesh stiffness 
is different for the two cases, as are the Fourier series coeffi- 
cients of the instantaneous reciprocal total mesh stiffness. 

Figures 24and 25 both are dominated by a single sinusoidal 
component with a period of about T = 2x8.4x10-' set z 17~10-~ set, 
as is readily apparent from the time-axis markings in Fig. 25. 
The frequency of this sinusoidal component is 
(l/T) s (17~lO-~)-l 2 5880 Hz. Since, according to Eq. (5.12), 
the slave gear tooth meshing fundamental frequency is 5833 Hz, 
it is clear from the above approximate calculation that the domi- 
nant sinusoidal component in Figs. 24 and 25 arises from the tooth 
meshing fundamental frequency of the slave gears. This conclusion 
is consistent with Eqs. (3.34) and (5.15), and the fact that the 
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transmission error "cross" dynamic increment function &I II(W) 
is very nearly zero for all multiples of the slave gear tooth 
meshing fundamental frequency except for the first which occurs 
at 5833 Hz as we can see from Fig. 15. 

The additional loading of about 5 to 7 lb added to the test 
gear teeth as a result of the slave gear mesh static transmission 
error excitation is clearly insignificant. However, this situa- 
tion is not necessarily typical. For example, if the test appara- 
tus rotational speed of 10,000 rpm were reduced to 6,000 rpm, 
then the slave gear tooth meshing fundamental frequency would be 
reduced to 0.6 x 5833.33 = 3,500 HZ according to Eq. (5.12). From 
Fig. 15, we see that for this speed reduction, IQ1 III would be 
increased from about IQ, III =: 0.43, which is its approximate 
value at 5833 Hz to IQ, II 1 a 5.6 which is its approximate value 
at 3500 Hz. The fractional increase in I& 1 is (5.6/0.43) =: 13. 
Consequently, at 6,000 rpm running speed, We'sould expect a maxi- 
mum loading increment from the slave gear mesh of about 
13 x 6 = 78 lb added to the test gear tooth loading from the dy- 
namic excitation provided by the slave gears. This value of 78 lb 
is no longer an insignificant fraction of the 366 to 338 lb maxi- 
mum loading seen in Figs. 22 and 23 that arises from the test gear 
dynamics alone. The major conclusion to be drawn from this simple 
exercise is that a significant loading increment on the teeth of 
one mesh can occur as a result of the dynamic excitation arising 
from another coupZed mesh - in this case the sZave gear mesh at 
6,000 rpm running speed. To avoid the potential for such effects, 
it is desirabZe to minimize the static transmission error excita- 
tion from every mesh in a system. Such minimization is accompZished 
using the profiZe modification design equations (4.6a) and (4.6b). 

Since there is no fixed phase relation between the teeth on 
the slave gears and those on the test gears, the time origin in 
Figs. 24 and 25 must be regarded as completely arbitrary relative 
to that in Figs. 22 and 23. Hence, the loading shown in Fig. 24 
has not been superimposed on that shown in Fig. 22, and the load- 
ing shown in Fig. 25 has not been superimposed on that shown in 
Fig. 23. 

Root Stresses on a Single Tooth 

From the loading histories shown in Figs. 22 through 25, tooth 
root stresses can be calculated using Eq. (3.37) and the material 
derived in Appendix B of this report. Such computations were car- 
ried out for the test gears in Fig. 1 using the following parameters: 

test gear tooth thickness, tf = 0.635 cm (0.25 in) (5.17) 

test gear tooth root fillet radius, r = 0.1016 cm (0.04 in) (5.18) 
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Heywood parameter, v = 0.25 (5.19) 

base radius included tooth angle, B = 3.98222 deg (5.20) 

'rn = 4.0909406 cm (1.6106065 in) (5.21) 

h = 0.56958151 cm (0.22424469 in), (5.22) 
0 

where the last four parameters are defined in Appendix B. 

The root stress histories were computed by Eqs. (3.37) and 
(B.l) (which are the same) using the methodology described in 
Appendix B. The stress histories computed from the loading history 
Wj(t) in Fig. 22 are shown in Figs. 26 and 27, which display the 
root stress histories for the driven and driving gears- respectively. 
These two stress histories are almost mirror images of each other - 
their lack of perfect symmetry arises from the lack of symmetry 
of the loading history in Fig. 22 about the pitch point. This 
latter lack of symmetry arises from the dynamic increment of the 
test gear pair response, which is not symmetric about the pitch 
point. The stress histories shown in Figs. 26 and 27 are for test 
gears with the linear tip relief as described earlier - these 
stress histories do not include the stress increments caused by 
the static transmission error excitation from the slave gears. 

The root stress histories computed from the loading history 
Wj(t) in Fig. 23 are shown in Figs. 28 and 29, which display the 
stress histories for the driven and driving gears respectively. 
These latter two stress histories are almost perfect mirror images 
of each other - their siight lack of symmetry arises from a very 
small lack of perfect symmetry about the pitch point of the load- 
ing history shown in Fig. 23. The stress histories shown in Figs. 
28 and 29 are for test gears with the "optimum" profile relief 
described earlier. Stress increments caused by the static trans- 
mission error excitation from the slave gears are not included in 
Figs. 28 and 29. Since the tooth loadings (shown in Fig. 22) on 
the test gears with linear tip relief generally are less (for 
these particular running conditions) than the tooth loadings (shown 
in Fig. 23) on the test gears with "optimum" profile relief, we 
see that the root stresses shown in Figs. 26 and 27 generally run 
less than those shown in Figs. 28 and 29. In all four stress 
histories shown in Figs. 26 through 29, the maximum root stress 
occurs at the instant of the highest point of single tooth con- 
tact (nearest to the tooth tip), as expected. 
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APPENDIX A 

DERIVATION OF EXPRESSION FOR EFFECTIVE 

LOCAL TOOTH PAIR STIFFNESS 

Let u:l) and ui2) denote, respectively, the elastic 
deformations of the mating teeth j on meshing gears (1) and 
(2). Let 

b p + uy' (A.11 2 3 

denote the combined deformation of the two mating teeth, where 
(1) , uj2), and uj 3 

are defined as positive when they are 
'I to removal of material from the tooth surfaces 

;~3"ivL-i-:n:j j * denote the component of the combined deformation 
arising from the force transmitted by tooth pair j'. Then 

2 
can be expressed as the superposition 

3 

l-3 = .I w L (A.21 

J 

where the summation over j' includes all tooth pairs j' in con- 
tact at the particular instant under consideration. Let c jj' 
denote the deformation of the contact point of tooth pair j 
arising from a unit force transmitted by tooth pair j' as de- 
fined earlier,*and let W., denote the force transmitted by 
tooth pair jl. Then, J 

W (A.31 ujjC = 'jjr jl ; 

hence, substituting Eq. (A.3) into Eq. (A.2), we have 

c W (A.41 uj=e, 'jjl jl * 

J 

Let k.. 
1 1 

be the inverse of the matrix 
[ 3 

Then the 
JJ' 'jjl ' 

force W. ransmitted by tooth pair j can be expressed as J 

w. = c k (A.51 
J jjl ujl J 

5' 

*The quantity c 
jt;, 

applies to the tooth pair; thus, we have 
C = p - - ? jj 1 + 'jjl where cji! and cj!?! are as defined in 
Fiiure 2. 
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which is the inversion of Eq. (A.4). Let W denote-the total 
force transmitted by all pairs of meshing teeth - i.e., 

w =cwj 
j 

=xX kjjf Ujl 

j j' 

where Eq. (A.5) has been used in going to the second line and 
the order of summation has been reversed in going to the third 
line. Interchanging the roles of j and j1 in the last line of 
Eq. (A.6), we have 

= C Ksj Uj , 
j 

(A.71 

where we have defined the effective local tooth pair stiffness 
as 

KSj "c, * I J jfj ' 
(A.8) 

Equation (A.8) expresses K in terms of the elements k.., Sj _ JJ 
of the inverse of the matrix 

1 I ‘jjr ' However, the matrix 

II 3 ‘jj I does not have to be inverted to compute Ksj. Let P., 
J 

be the loading distribution in Eq. (A.2) that yields a constant 
value u. = ii independent of j for all u. - i.e., 

& cjjr vj, . 
J 

(A.91 
* I J 

Then from Eq. (A.5), we have in this case 

i;ij = c kjj, u 
* 1 J 

=U 

C kjjt * 1 J 

= ii & kjtj 9 
J 

(A.lO) 
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where the last line in Eq. (A.lO) is a consequence of Maxwell's 
reciprocal theorem [p. 9 of Reference 151. Comparing Eqs. (A.8) 
and (A.lO), we see that 

i7 
2 Ksj = u ; (A.ll) 

that is, the solution m., J to the matrix equation (A.4) that 
yields a constant deformation u J = u yields the effective local 
tooth pair stiffness K w when v 5 is divided by u. The above 
derivation is the matrix counterpart to the derivation contained 
in Appendix B of Reference 4. 

Finally, we note that the effective tooth pair stiffness 
KSj depends on the position of the point of sontact on the faces 
of the teeth of tooth pair j. When this position is expressed as 
a function of the coordinate z, K sj becomes the (effective) local 
tooth pair stiffness K,(z) encountered in the first section of 
this report. Coordinate z is defined in terms of the involute 
roll angle E of the tooth under consideration by 

z = Rb& sin+ + c , (A.12) 

where Rb is the base circle radius, Cp is the pressure angle, and 
the constant c is chosen so that the origin of the coordinate z 
is placed at the exact midpoint of the range D of z where tooth 
contact takes place. (Thus, except in the case of identical 
meshing gears, the origin of z is not generally located at the 
pitch point.) 
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APPENDIX B 

GEOMETRY REQUIRED FOR EVALUATION OF ROOT STRESS FORMULA PARAMETERS 

The modified Heywood formula giveh by Cornell [8] for the root 
fillet tensile stress in a gear tooth is 

CY = 
wj cos$$ 

t, [ltO.26(~;*)1 

(B.1) 

where c is the root fillet tensile stress at the location indicated 
in Fig. B.1, t, is the tooth thickness measured parallel to the gear 
axis, Wj is the instantaneous force normal to the tooth surface 
that is transmitted by the tooth, v z i according to Cornell [8] and 
Heywood [g], and the remaining quantities in Eq. (B.l) are defined 
in Fig. B.l. 

Angle y, in Fig. B.l defines the point where the root fillet 
tensile stress is calculated by Eq. (B.l). Cornell [8] provides an 
equation for the value of y, that locates the position of the maximum 
root stress. Cornell's equation is 

tawsi+l = 
(1+0.16A;.')Ai 

Bi(4+0.416Ai*')-($-+0.016A;*')Aitan$i , (B-2) 

where 
h 

Ai = + + 2(l-cosYsi) , (B-3) 

and 
R 

Bi = --$ + sinysi , 

where h and R are defined in Fig. B.1, and subscripts i and i+l 
denote ihat thz transcendental equation (B.2) can be solved itera- 
tively for y, with i counting the steps in the iteration procedure. 

Once the angle y, is determined, the dimension hs shown in 
Fig. B.l also is determined by the formula 
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FIG. B.l. TOOTH GEOMETRY FOR EVALUATION OF 
ROOT STRESS FORMULA PARAMETERS. 
(ADAPTED FROM CORNELL [8].) 
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hs = ho + 2r(l-CosYs) , 

as one can readily show from Fig. B.l. The quantities t', r, V, and 
ha in Eqs. (B.l) through (B.4) are independent of the point of 
application of loading W. and the angle y,, and therefore may be 
regarded as constants. iquations (3.23) and (3.29) of this report 
determine the magnitude of the load W 
generic tooth j of mesh I. ' IJ 

= Wj transmitted by a 

To utilize Eqs. (B.l) through (B.4) in the present anafysis, 
we must find expressions for the remaining quantities $$, as, Rs, 

hW' and R o in terms of fixed parameters and a variable readily 
related to time t. Each of the quantities a;, Ai, Rs, hW, and R 
is directly dependent on the instantaneous position of tooth pai: 
contact - i.e., the instantaneous position of the load W. which 
changes with time as the gears rotate. The "temporal" vkiable 
that we shall use here to identify with time is the roll angle E 
of tooth j which is illustrated in Fig. B.2. Also shown there is 
the angle B between the tooth centerline and the intersection of 
the involute (active) tooth surface with the base circle. Several 
other quantities required in the present analysis also are defined 
in Figs. B.l and B.2. 

We shall now derive the following expressions for the above 
"'Cime-dependent" parameters: 

4; = E-6 (B.5) 

hW = 2Rb(l+sz)'siny (B.6) 

% 
= &i+rsinys+Rb[(l+e2)4cosy-cosfi] (f3.7) 

R; = Ls-Rb(l+s2)*sinytan(s-f3) (B.8) 

R. = Rb(l+e2)f[cosy-sinytan(s-e)l-firn (B.9) 

where 

Y = B-e + arctan e. (B.lO) 

When Eq. (B.lO) is substituted into the right-hand sides of Eqs. (B.6) 
through (B.g), the right-hand sides of Eqs. (B.5) through (B.9) all 
are dependent on only fixed parameters except for the time- 
dependent roll angle E. 

To show the validity of Eq. (B.5), we note first from Fig. B.l 
that 
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FIG. B.2. GEAR GEOMETRY FOR EVALUATION 
FORMULA PARAMETERS. 

OF ROOT STRESS 

103 



From Fig. B.2, we see that 

Y = B - (s-a) = B - E + a (B.12) 

and, also, that 

at6+$=lT 

or 

6 +. = 

Substituting Eqs. (B.12) and 

(B.13) 

(B.13) into Eq. (B.ll) yields Eq. (B.5 

To show the validity of Eq. (B.6), we see from Fig. B-1 that 

hW = 2RWsiny. (B.14) 

From Fig. B.2, we further see that 

Ri = R;, + (Rb~)2; 

hence, 

1. 

RW = Rb(l+e2)? 
(B-15) 

Substituting Eq. CB.15) into Eq. (B.14) yields Eq. (B.6). 

Turning to Eq. (.B.7), we may see from Fig. B.l that 

% 
= RWcosy - RbcosB + Rb . (~.16) 

From Fig. B.l, we further see that 

'b = Ri + rsinys . (B-17) 

Substituting Eqs. (B.15) and (B.17) into Eq. (B.16) yields Eq. (B.7). 

Next, from Fig. B.l, we note that 
hw '1: = R, - 2 tan@; . (~.18) 

Substituting Eqs. (B.5) and (B.6) into Eq. (B.18) yields Eq. (B.8). 

To show the validity of Eq. (B.9), we note from Fig. B.l that 

go 
hW = RWcosy - Ftan$~; - am . (B.19) 
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Substituting Eqs. (B.5), CB.6), and (B.15) into Eq. (B.19) yields 
Eq. (B-9). 

Finally, to show the validity of Eq. (B.lO), we note from 
Fig. B.2 that 

tancr = RbE - = E. 
Rb 

(B.20) 

Substituting cx = arctan E into Eq. (B.12) yields Eq. (B.lO). 
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